# Future Airspace Strategy Implementation (North)

# MTMA Liverpool- Network Changes (ACP-2019-76)

Stage 1 Assessment Meeting

4<sup>th</sup> February 2020



# Agenda



- Statement of need
- Background
- Justification
- How to address identified issues
- Provisional indication of the appropriate scaling level and notes re Process Requirements
- Draft Timescales and First Three Planned Gateway Assessments
- Next steps

# Statement of Need (ref. V2-29, 14-Feb-2020 – original submitted in Oct 2019)



#### 5. Statement of Need

Please provide a brief 'Statement of Need' dearly explaining what issue or opportunity this proposal is seeking to address.

#### Further information can be found in CAP1616 \*

This Airs pace Change Proposal will make changes to the ATS route network and STARs serving Liverpool Airport and Manchester TMA airs pace. The proposed changes will interface with the SIDs and arrival transitions serving Liverpool Airport. Liverpool Airport is currently in the process of proposing changes to their SIDs/arrival transitions. The changes proposed by this ACP will be coordinated with - and will complement - the airport's proposals.

#### Current Situation

Conventional SIDs and arrival transitions are not PBN and will soon be made obsolete by the planned decommissioning of several conventional navigation beacons.

#### Issue to be Addressed

Consideration of traffic flows between Liverpool and neighbouring airports (i.e. Manchester, Hawarden, Warton etc.). Introduction of revised ATS routes will systemise the traffic, also reducing fuel burn and CO2 emissions for flights using these routes.

New ATS routes/ STARs may be required to provide network connectivity for new SIDs/ arrival transitions as proposed by Liverpool Airport.

This proposal forms part of the plan for delivering the Airspace Modernisation Strategy.

#### Cause

Legacy ATS structure requires modernisation in accordance with the Airspace Modernisation Strategy,

# Background



- Liverpool John Lennon Airport is progressing a proposal to modernise the low-level routes below 7000ft.
- NATS will have to modify the route network above 7000ft to interface with the Airport's new route designs.
- NATS will also take this opportunity to make improvements to the enroute network. This will be achieved by considering improved holding arrangements and ATS routes, with the goal of systemising traffic to maximise capacity and resilience, while minimising environmental impacts.
- Liverpool John Lennon Airport is the 15th busiest Airport in the UK; in 2019 there were 59,320 flights p.a..

# FASI-N Partnership



- FASI-N ScTMA partnership structure;
  - NATS is responsible for the ACP for changes to the route network above 7000ft including STARs
  - Liverpool John Lennon Airport (LJLA) is responsible for the ACP for routes below 7000ft (SIDs and PBN arrival transitions). as such LJLA will be responsible for engagement and consultation with local stakeholders
- The Airspace Change Organising Group (ACOG) to provide guidance and coordination

### FASIN MTMA ACPs



 In accordance with the Airspace Modernisation Strategy the legacy airspace structure in the Manchester Terminal Manoeuvring Area (MTMA) is being modernised and redesigned. The Future Airspace Strategy Implementation (North) MTMA programme of changes includes ACPs by several sponsors as shown below.

#### **FASI-N MTMA ACPs**

#### **FASI-N MTMA Liverpool**

ACP-2019-76

Sponsor: **NATS** 

(Network changes above 7000ft to support Liverpool Airport's proposed changes)

#### **FASI-N Liverpool Airport**

ACP-2015-09

Sponsor: **Liverpool John Lennon Airport** (Arrivals & departures to/from Liverpool Airport below 7000ft)

FASI-N MTMA East Midlands & Manchester ACP-2019-77

Sponsor: NATS

(Network changes above 7,000ft to support Manchester Airport's proposed changes)

#### **FASI-N East Midlands Airport**

ACP-2019-44

Sponsor: East Midlands International Airport Ltd (Arrivals & departures to/from East Midlands Airport below 7000ft)

### **Justification**



The proposed changes are in accordance with the Airspace Modernisation Strategy.

The changes to the enroute network will enable the low-level changes proposed by Liverpool John Lennon Airport. Together - these two sets of changes - will provide synergies and hence they must be coordinated.

The DVOR rationalisation programme requires that reliance on ground based navigation aids is removed by changing to Performance Based Navigation (PBN).

The existing airspace has latent design safety risks which need to be resolved tactically.

# Objectives



- Maintain and improve on the current levels of safety within the Manchester TMA.
- Improve resilience in the management and systemisation of Liverpool Airport arrivals and departures, together with surrounding airports:
  - Reduce controller and pilot workload through systemisation.
  - Minimise impact of interactions between Liverpool and neighboring Airports i.e. Manchester, Hawarden, Warton etc.
  - Improved ATS routes will reduce environmental impacts
  - Increased capacity
- Utilisation of PBN STAR and ATS routes
- Remove reliance on ground-based navigation aids

### Impacts / Benefits



#### **ATS Units**

- Systemisation will reduce the complexity of interactions between Manchester and East Midlands traffic therefore enhancing capacity through a reduction per flight in ATC workload
- Systemisation will maintain or improve PC Safety Performance
- Systemisation will result in better traffic presentation to/ from Prestwick Centre ATC and a reduction in controller workload
- Create a modernised network capable of handling future growth in line with AMS
- It is recognised that these changes may impact other airports arrival /departure routes

#### Civil Air Traffic

- Reduction in delays as a result of improved holding/ delay absorption mechanism
- Improved climb & descent profiles
- Reduction in cockpit workload
- Improved utilisation of onboard technology
- Reduction in Fuel burn
- Improvement in 3Di performance

#### MoD / Operational Air Traffic

Minimal anticipated impact

#### General Aviation and Sport & Recreational Aviation

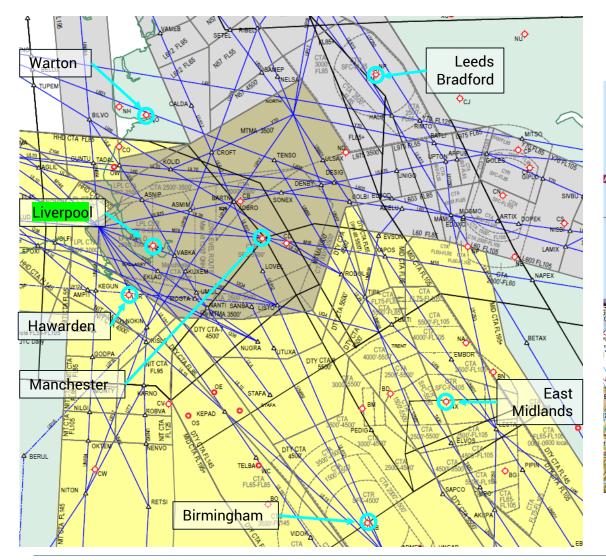
- Changes to some CAS bases possible which may allow release of CAS
- Willingness to evolve low level airspace design
- Relieve infringement risk in relation to low level CAS and deliver simplification of boundaries

# Environmental Impacts: CO<sub>2</sub> Emissions



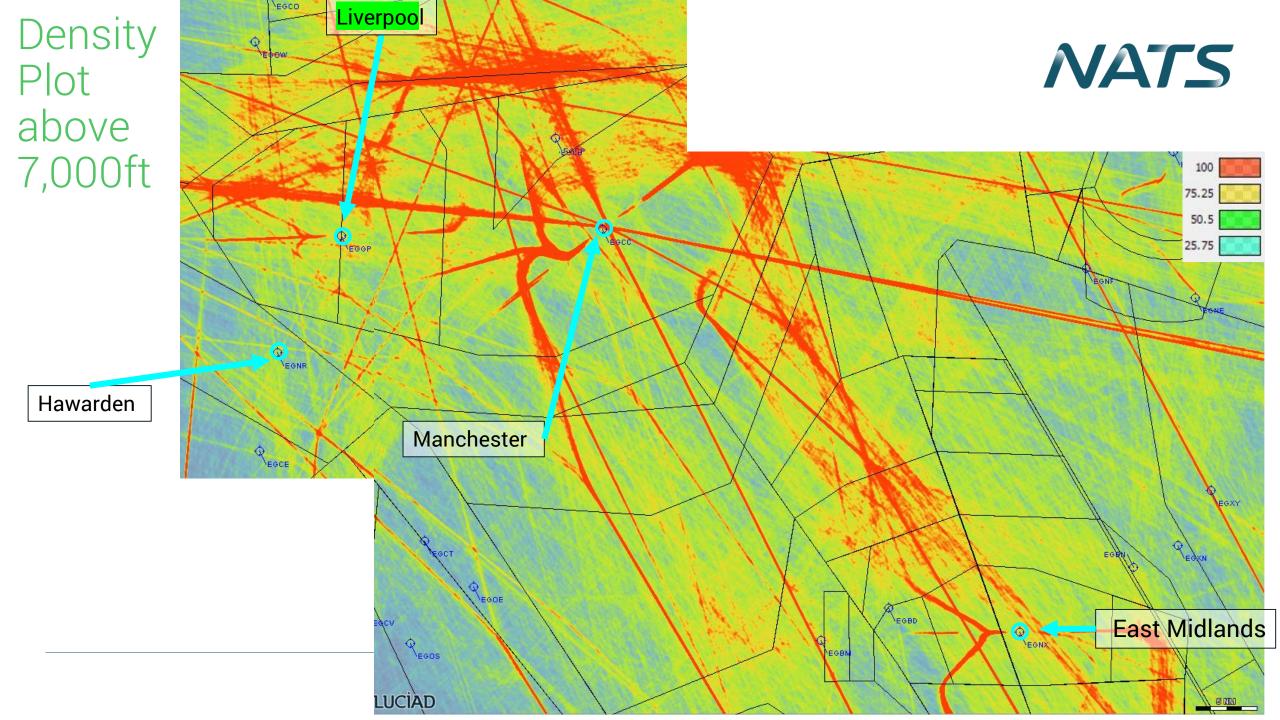
- The proposed changes will improve climb & descent profiles, enabling consistent continuous climb departures (CCDs) and continuous descent approaches (CDAs).
- The target is for a reduction in average  $CO_2$  emissions per-flight.
- A 3DI (3 Dimensional Inefficiency) analysis of the current and proposed airspace will also be performed to quantify the benefit of the proposed changes.

# Environmental: Over-flight/ Noise




#### Analyses required

- No noise analysis will be required for changes above 7000ft.
- CO<sub>2</sub> emissions analysis will be performed


# Current Routes and Traffic







NATS Unclassified 12



### Current MTMA Issues



- Highly tactical sectors, requiring ATC intervention to deliver a safe and efficient service; particularly between Manchester and Liverpool inbounds and outbounds
- Confluence of both Manchester and Liverpool traffic leads to high controller interaction and workload
- Hawarden and Liverpool traffic conflict and cause high controller workload
- Current airspace design would not accommodate the projected traffic demand

### Desirable outcome



Through collaboration and cooperation with Liverpool Airport and other stakeholders:

- Maintain and improve on the current high levels of safety within the MTMA
- Improve resilience in the management of Liverpool and Hawarden arrivals
- Reduce controller and pilot workload through systemisation of procedurally deconflicted inbound and outbound aircraft
- Minimise the impact of the Airport's tactical situation on others

# Airline Engagement



Engagement with the airlines will take place through the NATS Airspace and Flight Efficiency Partnership and Lead Operator Carrier Panel meetings.

(Attended by BA, BA City Flyer, Delta, Easyjet, FlyBe, Jet2,, Lufthansa, KLM, RyanAir, SAS, United, Virgin)

Other Operators - such as WizzAir - will be engaged with directly.

# Stakeholder Engagement



The following stakeholders will be engaged with during the CAP1616 process:

Airlines - the main airlines operating from East Midlands and Manchester Airports

Airports – adjacent airports such as Hawarden (EGNR)

**MOD -** via DAATM

NATMAC - 39 Organisations

Other Change Sponsors - of relevant airspace changes e.g. LAMP

Note: it is not intended to engage directly with local stakeholder representative groups.

Liverpool Airport will be undertaking consultation on the proposed low level routes and impacts thereof

NATS will provide support where necessary to Liverpool during consultation.

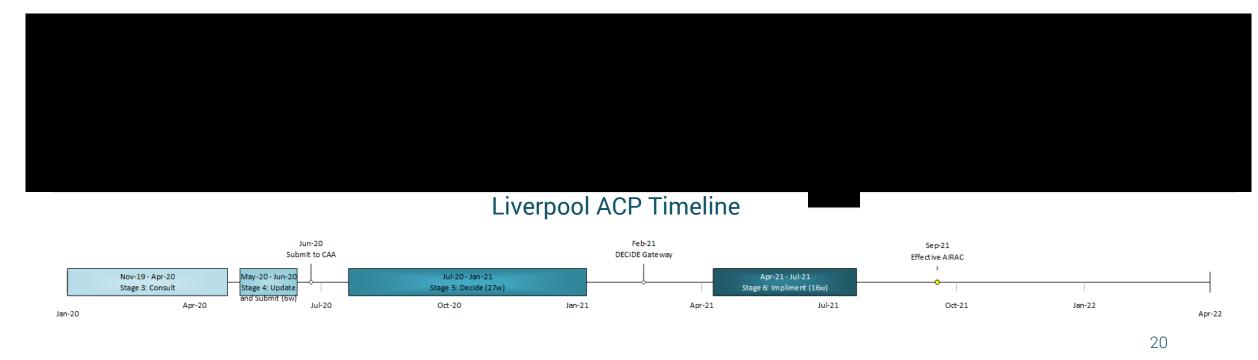
## Benefits

- Capacity benefits
- Compatible with AMS and future systemised network (FASIN)
- Improved climb and descent profiles resulting in a reduction in emissions

### Issues



- Coordination between FASI-N MTMA ACPs and associated interactions between Liverpool and Manchester (alongside others)
- Liverpool Airport have commenced their Stage 3 Consultation as part of their ACP.
- Dependencies to be identified during Stage 2.
- ACOG will assist in brokering resolution of conflicting requirements, to include management of timeline.


# Provisional Scaling and Process Discussion



- FASI-N Airports ACPs will drive the design and consult upon routes and traffic distribution below 7000ft.
- The NATS network ACP will be coordinated and aligned with these ACPs.
- The Level for the network ACP is to be confirmed.

### MTMA – March 2022





# East Midlands ACP Timeline In alignment with MAG

The NATS Implementation date is dependent on the progress of the East Midlands, Liverpool and Manchester ACPs.

# **Provisional Gateway Timescales**



NATS proposed gateway timescales will be submitted via a separate timeline request form to the CAA before being agreed upon.



Liverpool John Lennon Airport is currently targeting an implementation date of Summer 2021 (subject to further engagement with other stakeholders such as Manchester Airport).

# Overview Snap-shot of NATS Gateways



|                                                          | 2020 |     |     |       |       |        |      |      |         | 2021 |      |     |     |     |     |       |      |       |       | 2022   |     |     |     |     |     |     |     |       |     |        | 2023  |       |      |      |      |        |       |         |
|----------------------------------------------------------|------|-----|-----|-------|-------|--------|------|------|---------|------|------|-----|-----|-----|-----|-------|------|-------|-------|--------|-----|-----|-----|-----|-----|-----|-----|-------|-----|--------|-------|-------|------|------|------|--------|-------|---------|
|                                                          |      | Q2  |     | Q2 Q3 |       |        |      | Q4   |         |      | Q1   | Q1  |     | Q2  | Q2  |       | 23   |       | (     | Q4     |     | Q1  |     |     |     | Q2  |     | Q3    |     | Q4     |       |       | Q1   |      |      | Q2     |       |         |
| NERL Projects in progress                                | Mar  | Apr | May | Jun J | Jul / | Aug Se | ер О | ct N | lov Dec | Jan  | Feb  | Mar | Apr | May | Jun | Jul A | ug S | ep C  | oct N | ov Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug S | Sep | Oct No | ov De | ec Ja | an F | eb M | ar A | or May | y Jun | Ju      |
| Gateway Assessment Meeting Dates                         | 27   | 24  | 29  | 26    | 31    | 28     | 25   | 30   | 27 18   | 3 29 | 9 26 | 26  | 30  | 28  | 25  | 30    | 27   | 24    | 29    | 26 17  | 28  | 25  | 25  | 20  | 2.7 | 24  | 29  | 26    | 30  | 28 2   | 25    | 23    |      |      |      |        |       |         |
| Submission deadline (4 week lead-time)                   | 13   | 10  | 15  | 12    | 17    | 14     | 11   | 16   | 13 4    | 4 15 | 5 12 | 12  | 16  | 14  | 11  | 16    | 13   | 10    | 15    | 12 3   | 14  | 11  | 11  | 165 | 13  | 10  | 15  | 1.2   | 16  | 14     | 11    | 9     |      |      |      |        |       |         |
| VOR Rationalisation - Feb 20 (GOW, TRN)                  |      |     |     |       |       |        |      |      |         |      |      |     |     |     |     |       |      |       |       |        |     |     |     |     |     |     |     |       |     |        |       |       |      |      |      |        |       |         |
| VOR Rationalisation - Sept 20 (WCO, BNN) (completes BIG) |      |     |     |       |       |        | 10   |      |         |      |      |     |     |     |     |       |      |       |       |        |     |     |     |     |     | }   |     |       |     |        |       |       |      |      |      |        |       |         |
| VOR Rationalisation - Sept 20 (DTY) (completes WHI)      |      |     |     |       |       |        | 10   |      |         |      |      |     |     |     |     |       |      |       |       |        |     |     |     |     |     |     |     |       |     |        |       |       |      |      |      |        |       |         |
| Dublin R2 changes to Q37 & Q36                           | St3  |     |     | 18    |       |        | St   | t5   |         |      | 25   |     |     |     |     |       |      |       |       |        |     |     |     |     |     |     |     |       |     |        |       |       |      |      |      |        |       |         |
| Y124 move and make available H24                         |      | St3 |     | 26    |       |        | St   | t5   |         |      | 25   |     |     |     |     |       |      |       |       |        |     |     |     |     |     |     |     |       |     |        |       |       |      |      |      |        |       |         |
| SAIP - AD6: Bipartite Level 1 with EGGW airport          |      |     |     |       |       |        | 25   |      |         | St5  |      |     |     | 3   |     |       |      |       |       |        |     |     |     |     |     |     |     |       |     |        |       |       |      |      |      |        |       |         |
| Free Route Airspace (FRA) PC Dep 1                       |      |     |     |       |       |        |      |      | 30      |      |      |     |     |     |     | S     | St5  |       |       | 2      |     |     |     |     |     |     |     |       |     |        |       |       |      |      |      |        |       |         |
| Free Route Airspace (FRA) SWK Dep 2                      | St2  |     |     | St3   |       |        |      |      |         | 30   | 0    |     |     | St5 |     |       |      |       |       |        |     |     |     |     |     |     |     |       |     |        |       | 1     |      |      |      |        |       |         |
| LAMP 2                                                   |      |     |     | 5     | St2   |        |      |      | St3     |      |      |     |     |     |     | 5     | ubje | ct to | revie | ew.    |     |     |     |     |     |     |     |       |     | St5    |       |       |      |      |      |        |       |         |
| VOR Rationalisation - Nov 20 (LAM,DET)(completes LON)    | S2-3 | ACP |     |       |       |        |      |      | - 3     | 3    |      |     |     |     |     |       |      |       |       |        |     |     |     |     |     |     |     |       |     |        |       |       |      |      |      |        |       |         |
| VOR Rationalisation -Sept 20 (MAY) (small scope)         | S2-3 | ACP |     |       |       |        |      |      | 4       | 3    |      |     |     |     |     |       |      |       |       |        |     |     |     |     |     |     |     |       |     |        |       |       |      |      |      |        |       | $\perp$ |
| FASI-N_PLAS_Network MTMA - GP                            |      |     |     |       |       |        |      |      |         |      |      |     |     |     |     |       |      |       |       |        |     |     |     |     |     |     |     |       |     |        |       |       |      |      |      |        |       |         |
| FASI-N_PLAS_Network MTMA - CC + NX                       |      |     |     |       |       |        |      |      |         |      |      |     |     |     |     |       |      |       |       |        |     |     |     |     |     |     |     |       |     |        |       |       |      |      |      |        |       |         |
| FASI-N_PLAS_Network ScTMA - PH                           |      |     |     |       |       |        |      |      |         |      |      |     |     |     |     |       |      |       |       |        |     |     |     |     |     |     |     |       |     |        |       |       |      |      |      |        |       |         |
| FASI-N_PLAS_Network ScTMA - PF                           |      |     |     |       |       |        |      |      |         |      |      |     |     |     |     |       |      |       |       |        |     |     |     |     |     |     |     |       |     |        |       |       |      |      |      |        |       | A       |

# Engagement, and Next Steps



- Commence engagement with stakeholders on Design Principles
- NATS to liaise closely with LJLA (Liverpool John Lennon Airport), ACOG and other stakeholders
- NATS to engage with airlines, airports, GA and MoD.
- NATS to respond to LJLA ACP Consultation.

# Questions?

