CAA CAP 1616 Options Appraisal Assessment (Phase II Full)

Title of airspace change proposal		SAIP AD6	
Change sponsor	NATS/London Luton Airport		
Project no.	$2018-65$		
Case study commencement date	$07 / 08 / 2020$	Case study report as at	

Account Manager: N/A	
Airspace Regulator (Technical):	

Instructions

To aid the SARG project leader's efficient project management, please highlight the "status" cell for each question using one of the four colours to illustrate if it is:
Resolved-GREEN Not Resolved - AMBER
Not Applicable - GREY

Guidance

The broad principle of economic impact analysis is proportionality; is the level of analysis involved proportionate to the likely impact from that ACP? There are three broad levels of economic analysis; qualitative discussion, quantified through metrics, and monetised in $£$ terms. The more significant the impact, the greater should be the effort by sponsors to quantify and monetise the impact.

1．Background－Identifying the impact of the shortlist of options（including Do Nothing（DN）／Do Minimum（DM））			Status
1.1	Are the outcomes of DN／DM and DS scenarios clearly outlined in the proposal？		X $\square \square \square$
1．1．1	Has the change sponsor produced an Options Appraisal （Phase II－Full）which sets out how Initial appraisal is developed into a more detailed quantitative assessment， moving from qualitatively defined shortlist options to the selected preferred option？［E23］	Yes，the change sponsor produced the FOA which is built on the IOA into a more detailed quantitative and monetised analysis for noise，fuel burn， greenhouse gas impact and economic impact from increased effective capacity．	区
1．1．2	Does each shortlist option include the impacts in comparison to the＇do nothing／do minimum＇option，in particular： －all reasonable costs and benefits quantified －all other costs and benefits described qualitatively －reasons why costs and benefits have not been quantified	Yes，the sponsor analysed Option 1 and Option 2 in comparison with the baseline option with all the reasonable costs and benefits quantified and monetised，and where quantification is not proportionate the sponsor provided the qualitative analysis for the costs and benefits with rationale provided for each impact．	】
1．1．3	Where options have been discounted，does the change sponsor clearly set out why？	The sponsor listed individual option elements in the IOA due to the possibility of considering combinations of these and presented the two possible combination options at this stage which are both safe and viable．	区
1．1．4	Has the change sponsor indicated their preferred option in the Options Appraisal（Phase II－Full）？［E23］	Yes，Option 2 is stated as preferred option which allows RNAV hold north of Luton with PBN routes and vectoring to the runway．	凹 $\square \square \square$
1．1．5	Does the Full Options Appraisal（Phase II－Full）detail what evidence the change sponsor will collect，and how，to fill in any evidence gaps and how this will be used to develop the Options Appraisal（Phase III－Final）？Does the plan for evidence gathering cover all reasonable impacts of the change？	The sponsor provided all evidences related to noise， fuel burn and greenhouse gases，which are WebTAG spreadsheets for Option 1 and 2，and there are separate assumptions carried out for with DCO and without DCO scenarios．	\ $\square \square \square$

2. D	ct impact on air traffic control				tatus
2.1	Are there direct cost impacts on air traffic control / management systems? If so, please provide below details of the factors considered and the level in which this has been analysed.				$\square \square \square$
2.1.1	Examples of costs considered (please add costs that have been discussed, and any reasonable costs that the Airspace Regulator (Technical) feels have NOT been addressed) See below.				
		Not applicable	Qualitative	Quantified	Monetised
2.1.2	Infrastructure changes		X	N/A	N/A
2.1.3	Deployment		X	N/A	N/A
2.1.4	Training		X	X	N/A
2.1.5	Day-to-day operational costs / workload / risks	N/A			
2.1.6	Other (provide details)	N/A			
2.1.7	Comments The sponsor stated it is not expected to change airport or ANSP infrastructure, beyond the initial deployment phase which would require some systems engineering amendments for Option 1 and Option 2. In terms of deployment costs, the sponsor expects air traffic controllers would require significant training, in the order of 120-150 controllers and circa 50 assistants at NATS Swanwick, also 25 controllers and 5 assistants based at Luton Airport. In addition to this, it is also mentioned some staff may only require briefings and support staff are required to run simulator. The Sponsor raises a concern that during training times, operational rostering might become a factor as there is still a need to provide continuous service delivery.				
2.2	Are there direct beneficial impacts on air traffic control / management systems? If so, please provide details and how they have been addressed:				\searrow
2.2.1	Examples of benefits considered	Not applicable	Qualitative	Quantified	Monetised
2.2.2	Reduced work-load		X	N/A	N/A

2.2.3	Reduced complexity / risk			/A
2.2.4	Other (provide details)			
2.2 .5	Comments It is explained in the FOA that under the baseline option, the intertwining of Luton arriv would be no opportunity to rebalance the workload which would cause extra comple sponsor aims to change the airspace design to avoid any potential latent safety impact over-demand. The Sponsor uses MV (Monitoring Value) to describe the capacity issues in each segm describes MV as broadly indicating the number of movements per hour which can be in each associated airspace sector. Both Option 1 and Option 2 will improve the MV the STANSTED flow and it would be moved into a new upstream flow, thus separating Also, in terms of the resilience impact, the sponsor stated air traffic controllers can m need for radio exchanges (interactions) per flight, the more resilient the airspace syst managing the overall flows and less time making constant adjustments to individual flig controllers working with arrivals from the simplified upper system would require 6-8 to be 21-28. So, the FOA indicates Option 1 will be more resilient than Option 0 by the controllers' workloads. And Option 2 is declared to be the most resilient option by the the controllers' workloads. NATS can provide evidence of how they reached these resilience figures to justify the In summary, the Options being proposed will improve capacity, resilience and ultimat	ns load cc e d t en b on th e b m m (III k	ould ers usta ed. lers flow dit pend tion exch dio e 10 ra Anne persp	ther the s of flows from ver the is said m the s from
2.3	Where monetised, what is the net monetised impact on air traffic control (in net present value) over the project period? N/A			
2.4	Are the direct impacts on air traffic management analysed accurately and proportionately? The sponsor presented all the air traffic management related impacts by touching on the probable costs and benefits for each impact with clear statements provided to explain the methodology for quantitative analysis where available and allow qualitative assessment where it is not proportionate to carry out quantitative analysis. This is considered to be in line with CAP 1616 approach.			

3. Changes in air traffic movements / projections					Status
3.1	What is the impact of the ACP on the following and has it been addressed in the ACP proposal?				
		Not applicable	Qualitative	Quantified	Monetised
3.1.1	Number of aircraft movements	X			
3.1.2	Type of aircraft movement		x	N/A	N/A
3.1.3	Distance travelled		X	X	X
3.1.4	Area flown over / affected		X	N/A	N/A
3.1.5	Other impacts				
3.1.6	Comments The sponsor underlined the fact that Luton and Stansted arrival flows cannot be separated without changing the airspace design. Therefore, Option 1 and 2 are being proposed under which, the Luton flow is separated from the Stansted flow and as anticipated by the sponsor, this would be moved into a new upstream flow which enables the separation of the flow dependency. The sponsor aims to create an extra capacity by separating the Luton flow from the Stansted upstream flow which would then remove the probability of upstream delay. The sponsor explained that such change in the airspace would have the broader impact of delay to the travelling public, businesses and local communities would reduce and it is anticipated that there'd be additional capacity to absorb delay to cater for the forecast increase in air traffic. The sponsor assumed for Option 1 and Option 2 that these structures would delay individual delays which are less than or equal to 15 minutes. To monetise the cost of avoiding such delay, the sponsor benefited from NATS analysis produced in April 2018 which assumes per minute delay costs at $£ 3.68$ where delay ≤ 15 mins. The monetisation is presented in the FOA with the following details which applies to both Option 1 and Option 2: For 2021, a net delay avoidance is reported as c. 10,200 minutes in total. $10,200 * £ 3.68=£ 37,500$ pa For 2031, a net delay avoidance is reported as c. 11,200 minutes in total. $11,200^{*} £ 3.68=£ 41,200$ pa				

tables which is a requirement under CAP 1616 Appendix E.

Negative values are cost or disbenefit	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	Net
Year	0	1	2	3	4	5	6	7	8	9	10	Present
Discount factor	1	0.9662	0.9335	0.9019	0.8714	0.8420	0.8135	0.7860	0.7594	0.7337	0.7089	Value
Option 2 Without DCO												
Net community benefit (Noise)	-£36,442	-£35,490	-£34,620	-f33,821	- $£ 33,079$	-f32,389	-£31,745	-£31,127	- $£ 30,550$	- $£ 29,981$	- $£ 29,420$	
Net community benefit (CO_{2})	-£140,249	-£136,293	-£132,375	-£128,577	-£124,819	-£121,178	-£119,086	-£115,539	-£112,037	- $£ 116,600$	-£121,803	
Net airspace users benefit (CO_{2})	-£235,823	$-£ 283,708$	- $£ 326,808$	- $£ 357,796$	$-£ 392,582$	$-£ 423,454$	- $£ 444,049$	$-£ 468,137$	$-£ 489,078$	-£507,063	-£527,761	
Net airspace users benefit (Fuel costs)	- $£ 2,084,000$	$-£ 2,062,000$	-£2,039,000	-£2,017,000	- $£ 1,995,000$	- $£ 1,973,000$	-£1,951,000	- $£ 1,929,000$	- $£ 1,906,000$	-£1,884,000	-£1,862,000	
Net airspace users benefit (Delay)	£37,500	£37,870	£ 38,240	£38,610	£38,980	£39,350	£39,720	£40,090	£40,460	£40,830	£41,200	NPV
Present value (rounded to nearest whole $£ 1,000$, NPV is sum of	- $£ 2,459,000$	$-£ 2,411,000$	$-£ 2,362,000$	$-£ 2,305,000$	$-£ 2,255,000$	$-£ 2,205,000$	$-£ 2,150,000$	$-£ 2,099,000$	$-£ 2,048,000$	$-£ 2,006,000$	- $£ 1,970,000$	£24,270,000

Negative values are cost or disbenefit	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	Net
Year	0	1	2	3	4	5	6	7	8	9	10	Present
Discount factor	1	0.9662	0.9335	0.9019	0.8714	0.8420	0.8135	0.7860	0.7594	0.7337	0.7089	Value
Option 2 With DCO												
Net community benefit (Noise)	-£36.442	- $£ 33.909$	- $£ 31.526$	-£29.272	-£27.129	- $£ 25.084$	-£23.126	-£21.237	-£19,422	-¢17.657	£15,940	
Net community benefit (CO_{2})	- $£ 140,249$	- $£ 136,293$	- $£ 132,375$	- $£ 137,136$	-£133,198	- $£ 130,872$	-f131,653	- $£ 130,727$	- $£ 129,725$	-£136,133	-£143,447	
Net airspace users benefit (CO_{2})	- ¢235,823	- $£ 283,708$	- ¢926,808	- $£ 382,419$	- $£ 419,916$	- $£ 458,693$	- $£ 492,917$	- $£ 532,595$	- $£ 570,196$	- 5996,741	$-£ 627,097$	
Net airspace users benefit (fuel costs)	$-£ 2,084,000$	-£2062,000	- $£ 2.039,000$	$-£ 2,155,000$	-£2,133,000	-£2.136.000	- $£ 2164000$	- $£ 2,192,000$	-£2,220,000	- $£ 2,214,000$	-£2,209,000	
Net airspace users benefit (Delay)	£37,500	£37,870	£38,240	£38,010	£38980	£39,350	£39,720	$\pm 40,090$	£40,460	£40,830	£41,200	NPV
Present value (rounded to nearest whole $£ 1,000$, NPV is sum of	$-£ 2,459,000$	-£2,410,000	- $£ 2,358,000$	$-£ 2,458,000$	- $£ 2,405,000$	-£2,380,000	- $£ 2,376,000$	$-£ 2,376,000$	$-£ 2,375,000$	- $£ 2,345,000$	- $£ 2323,000$	- $£ 26,264,000$

| 4. Benefits of ACP | | | | |
| :--- | :--- | :--- | :--- | :--- | :---: |

	Average change in fuel cost per flight is also reported with the below chart in the FOA to highlight the changes that would apply to Luton and Stansted arrivals.				
	Average chan	e in fuel cost	st per flight (LL	Arrivals)	
	Scenario	2022	2032 No DCO	$\begin{aligned} & 2032 \text { With } \\ & \text { DCO } \end{aligned}$	
	Num fights	70.740	70.740	91,500	
	t fue total	-6.330	-6,330	-7,302	
	t fuel per flight	-0069	-0.089	-0.080	
	t Co2e per flight	-0.285	-0.285	-0.254	
	£/flt Oat 1	¢31.92	- $\times 31.92$	+28.47	
	£/fll Oot 2	+31.92	£31.92	+28.47	
	Average change	in fuel cos	er flight (Stans	ted Arrivals)	
	Numfights	101.719	102.410	102,410	
	tfue total	489	1.111	1,111	
	t fuel per fl ght	0.005	0011	0.011	
	t Co2e per flight	0.015	0034	0.034	
	£/flt Opt 1	£1.72	£3.87	£3.87	
	¢/flt Oot 2 \|	¢1.72	¢3.87	£3.87	
4.2	How are the abo	ve group	impacted b	the ACP, especially (but not	sively) looking at the following factors below:
4.2.1	Improved journe	y time for	customers of	air travel	Positively
4.2.2	Increase choice	freque	cy and destin	ations from airport	N/A
4.2.3	Reduced price d	e to add	tional compe	ition because of new capacity	N/A
4.2.4	Wider economic	benefits			Positive impact from increased effective capacity
4.2 .5	Other impacts				Significant negative impact for Option 2 in terms of noise, and negative fuel burn and greenhouse impact for both options
4.2.6	Comments				
4.3	What is the ove Please see the a	all mon nswer to	ised impacts Q3.5 above.	associated with 4.1 and 4.2 th	

4.4	What are the non-monetised but quantified impacts of the above? (Insert details of description) Resilience impact was analysed qualitatively and quantitatively. Please see the answer to Question 2.2 .5 for detailed information which is available on third paragraph.	
4.5	What are the qualitative / strategic impacts described above? Please see the answers to Question 2.2.5.	
4.6	What is the overall monetised benefits-costs ratio (BCR) of the policy? Is it more than $\mathbf{1 ?}$ N/A	
4.7	Have the sponsors provided reasonable justification for the proportionality of analysis above? Yes, the sponsor has given the justification for why it wouldn't be proportionate for them to monetise the impact from resilience. It is stated that due to the unpredictable nature of the events like runway closure or bad weather plus many other complex factors can influence the level of resilience and therefore it is not proportional to monetise such impacts.	凹 $\square \square \square$
4.8	If the BCR is less than 1, are the quantitative and qualitative strategic impacts proportional to the costs of the ACP? N/A	

6. Summary of Assessment of Economic Impacts \& Conclusions

6.1 The sponsor carried out a detailed quantitative and monetised analysis as outlined in CAP 1616 process, moving from qualitatively defined shortlist options to the selection of the preferred option.

Each shortlist option is fully developed, including the 'do nothing' option, in particular:

- all reasonable costs and benefits quantified
- all other costs and benefits described qualitatively
- reasons why costs and benefits have not been quantified

