

HQ 11 Group RAF Air Command Hurricane Block RAF High Wycombe Walter's Ash Buckinghamshire

Tel: 03001 641013

Email: AirspaceTrial@mod.gov.uk

9 Sep 2021

ACP 2020-026 Future Combat Airspace

GATEWAY DOCUMENTATION: STAGE 2 Develop and Assess

STEP 2a(ii) Design Principle Evaluation

Contents

<u>Introduction</u>	3
Statement of need	4
Design principles	4
Options Evaluation	6
Conclusion	10

References

- 1. CAP 1616 Airspace Change Process
- 2. All published documentation related to this airspace change proposal is available on the CAA Airspace Change portal:

https://airspacechange.caa.co.uk/PublicProposalArea?pID=257

- 3. CAP 1430 UK ATM Vocabulary
- 4. ACP-2020-042 https://airspacechange.caa.co.uk/PublicProposalArea?pID=253
- 5. ACP-2021-007

Airspace change proposal public view (caa.co.uk)

Introduction – about this document, scope, background.

The Ministry of Defence, and specifically 11 Group Training Enablers, is the change sponsor for this proposal. The proposal seeks to secure Future Combat Airspace (FCA) for the use by UK and multi-national partners during occasional large scale, highly complex, multi-domain collective training exercises that are used to prepare aircrews for operational service.

This document forms part of the Airspace Change Proposal process as defined in CAP 1616 and should be read in conjunction with 2a(i) options development. For ease of reading the Statement of Need and Design Principles are re-iterated before the document outlines the various options considered to meet the Statement of Need.

What was the statement of need for this proposal?

Air Command, on behalf of the Ministry of Defence, has an obligation to provide relevant tactical collective training to its combat and combat support forces to ensure UK Forces are correctly prepared to defend UK interests in line with the UK Defence Strategy. An appropriate airspace is required to meet this need; it must safely facilitate exercising large forces of modern and future air platforms in an efficient and representative combat environment.

Core military requirements:

Minimising the risk of Mid-Air Collisions (MAC) to the maximum extent whilst enabling;

- Full tactical employment of aircraft and weapons capability
- Supersonic flight and rapid height changes
- Overflight and loiter of rural overland (target) areas
- Use high and low altitude activity concurrently
- Representative employment ranges of simulated air-air and air-surface weapons
- Representative operational numbers
- Ability to oppose from ground and air simultaneously
- Contested in electromagnetic environment.

Changing external circumstances make current solutions untenable to deliver the required needs of Defence. Alternate airspace would diminish required training objectives for Defence and increase the risk to all air users to an unpalatable level. This change request will be, in part, informed by the associated trial data received through ACP-2020-042 and temporary activation ACP-2021-007.

Design principles

The design principles (DPs) were set following engagement with representative stakeholder groups as part of CAP1616 Stage 1; the DPs and their relative priorities are shown below. These will be used to evaluate the design options to determine which will be discarded and which will be progressed.

The table below comprises a consolidated list of the DPs at the end of Stage 1B, prioritised as shown and ready to take forward into Stage 2. Safety is the highest priority and DP(a) is automatically assigned Priority 1.

The MoD feels that the ability to complete its training and operational objectives is next in priority after safety and, since no stakeholder contested this, DP(b) is assigned Priority 2 along with the corresponding DP(e) about minimising impact to other airspace users.

The method of determining the remaining DPs order of prioritisation has been determined by the comments received, not just upon the volume of responses. It is anticipated in CAP1616 that design principles may conflict or that some would be more important to one organisation that another. Therefore, blending of the principles is required and, recognising all the comments provided through engagement, they are summarised as follows:

Priority	Design Principle
1	DP(a) The airspace design must be safe, with any hazards identified and risks mitigated such that they are as low as reasonably practicable and tolerable.
2	DP(b) The training area will be within efficient reach of RAF / United States Air Force (Europe) (USAFE) Main Operating Bases. DP(c) Optimise the airspace design to accommodate periodic largescale multi-domain collective training activities. DP(e) Minimise impact on other airspace users and the network.
3	DP(h) Minimise the impact to Commercial Air Traffic flow, sector complexity and sector capacity. DP(g) Minimise environmental impacts including CO2 emissions. DP(f) Minimise environmental impacts including noise (where relevant).
4	DP(d) Optimise Airspace Management (ASM) applying Flexible Use of Airspace (FUA) principles and ASM Policy
5	DP(j) Minimise complexity in flight planning. DP(j) Optimise protocols for deconfliction of simultaneous activations of multiple volumes of Special Use Airspace. DP(k) Maximise the incorporation of results of the MOD's supporting Airspace trial – ACP-2020-042.

Table 1. Design Principles

A summary of design options is below

	Option	Description
0	Baseline	The "do nothing" option. Keep everything as it is currently, continue to use D323 and D613.
1	Create new Special Use Airspace with overland portion (preferred option).	Create new Special Use Airspace with similar dimensions to TDA 597 with overland portions on which ground threats and targets can be positioned.
2	Create new Special Use Airspace with overland portion based upon trial TDA 598	Airspace based upon the dimensions of TDA 598.
3	Create Special Use Airspace as in option 1 with additional lateral dimensions for air to air re-fuelling and force regeneration.	Additional areas in order to avoid aircraft "spilling over" outside of the exercise airspace.

Table 2. Design options summary

An initial evaluation of the potential options against the design principles is below. This is a rudimentary evaluation, not an evaluation of a detailed design, therefore if a design principle is potentially achievable it will be marked as met and annotated 'potentially' any viable options will be further appraised at stage 2b.

Options evaluation

Do nothing				
Description of option				
Use existing airspace structure				
Design principle a: The airspace design must	Not met	Partial	Met	
be safe, with any hazards identified and risks				
mitigated such that they are as low as				
reasonably practicable and tolerable.				
This option results in familiar airspace with no cha	naes.			_
Design principle b: The training area will be	Not met	Partial	Met	_
within efficient reach of RAF/United States Air				
Force (Europe) (USAFE) main operating bases.				
The current structure isn't geographically optimal f	or all exercise pla	avers eg Lossiem	outh through to	_
E Anglia.	or an oxoroide pi	ayoro og 2000iom	outil till ougil to	
Design principle c: Optimise the airspace	Not met	Partial	Met	_
design to accommodate periodic large-scale,	rtot mot	rantiai	Wiot	
multi-domain collective training exercises.				
The current construct is of insufficient space and in	ncorrect dimensi	on for modern airc	raft and	_
weapon trg.	icorrect diriterisit	on for modern and	rait and	
Design principle d: Optimise airspace	Not met	Partial	Met	_
management (ASM) applying flexible use of	NOT THE	Faitiai	IVICI	
airspace (FUA) principles and ASM policy.				
Current MDAs are managed using FUA principles.				_
Design principle e: Minimise impact on other	Not met	Partial	Met	_
airspace users and the network.	Not met	Partial	iviet	
Current D323 and 617 construct is restrictive to G	Λ troffic			_
		Dortiol	Mat	
Design principle f: Minimise environmental	Not met	Partial	Met	
impacts, including noise (where relevant).				
Decima principle at Minimise environmental	Not most	Dortiol	Mat	
Design principle g: Minimise environmental	Not met	Partial	Met	
impacts, including CO2 emissions.				
Description of the first of the first of the first of the	Matanat	D. C.I	N.A	
Design principle h: Minimise the impact to	Not met	Partial	Met	
commercial air traffic flow, sector complexity				
and sector capacity.				
	NI 4			
Design principle i: Optimise protocols for	Not met	Partial	Met	
deconfliction of simultaneous activations of				
multiple volumes of Special Use Airspace.				
Design principle j: Minimise complexity in flight	Not met	Partial	Met	
planning.				_
Design principle k: Maximise the incorporation	Not met	Partial	Met	
of results of the MOD's supporting airspace trial				
ACP2020-042.				

Create angold use giranges with everland parties			
Create special use airspace with overland portion			
Description of option	91	NE E. de	1 - 1 0 -
Create a portion of airspace over the North Sea wi	ith overland porti	ons in NE England	a and SE
Scotland	NI 4	5	
Design principle a: The airspace design must	Not met	Partial	Met
be safe, with any hazards identified and risks			
mitigated such that they are as low as			
reasonably practicable and tolerable.		05 0004 005	
This option maximises lessons learned from ACP-			
Design principle b: The training area will be	Not met	Partial	Met
within efficient reach of RAF/United States Air			
Force (Europe) (USAFE) main operating bases.			
	N		
Design principle c: Optimise the airspace	Not met	Partial	Met
design to accommodate periodic large-scale,			
multi-domain collective training exercises.			
Design principle d: Optimise airspace	Not met	Partial	Met
management (ASM) applying flexible use of			
airspace (FUA) principles and ASM policy.			
Activation only when required to comply with FUA			
Design principle e: Minimise impact on other	Not met	Partial	Met
airspace users and the network.			
Through notified activations and new reporting poi			
Design principle f: Minimise environmental	Not met	Partial	Met
impacts, including noise (where relevant).			
Early engagement - no changes below 7000' so n	o noise issues.		
Design principle g: Minimise environmental	Not met	Partial	Met
impacts, including CO2 emissions.			
Initial feedback from NATS suggests lower CO2 in	npact due to sup	pression of D323	during trial
activation. Can be modelled further.			_
Design principle h: Minimise the impact to	Not met	Partial	Met
commercial air traffic flow, sector complexity			
and sector capacity.			
The creation of a CTA to facilitate Newcastle traffic	c to facilitate a lo	ng-term solution v	vill be
investigated with NATS.			
Design principle i: Optimise protocols for	Not met	Partial	Met
deconfliction of simultaneous activations of			
multiple volumes of Special Use Airspace.			
These would be written in to the agreement and m	anaged by MAM	C.	
Design principle j: Minimise complexity in flight	Not met	Partial	Met
planning.			
ASM protocols including a CTA and routing points	to circumnavigat	te a MDA would b	е
implemented.	3.4		
Design principle k: Maximise the incorporation	Not met	Partial	Met
of results of the MOD's supporting airspace trial			
ACP2020-042.			
AOI 2020 072.			

Create Special Use airspace over the North Sea with overland portion based on D598							
Description of option							
Create a portion of airspace over the North Sea with small overland portions in NE England.							
Design principle a: The airspace design must	Not met	Partial	Met				
be safe, with any hazards identified and risks							
mitigated such that they are as low as							
reasonably practicable and tolerable.							
Feedback from TDA EG D598 identified the require	ement for networ	k visibility.					
Design principle b: The training area will be	Not met	Partial	Met				
within efficient reach of RAF/United States Air							
Force (Europe) (USAFE) main operating bases.							
Design principle c: Optimise the airspace	Not met	Partial	Met				
design to accommodate periodic large-scale,							
multi-domain collective training exercises.							
Insufficient overland portions on which to present	ground threats.						
Design principle d: Optimise airspace	Not met	Partial	Met				
management (ASM) applying flexible use of							
airspace (FUA) principles and ASM policy.							
EG D 598 managed tactically - GAT unable to flig	htplan.						
Design principle e: Minimise impact on other	Not met	Partial	Met				
airspace users and the network.							
Lessons learned from D598 activation could be ap	plied.						
Design principle f: Minimise environmental	Not met	Partial	Met				
impacts, including noise (where relevant).							
Early engagement – no changes below 7000' so	no noise issues.						
Design principle g: Minimise environmental	Not met	Partial	Met				
impacts, including CO2 emissions.							
Geographical area similar to that used in trial with	positive results.						
Design principle h: Minimise the impact to	Not met	Partial	Met				
commercial air traffic flow, sector complexity							
and sector capacity.							
The creation of a CTA to facilitate Newcastle traffi	c to facilitate a lo	ng-term solution v	will be				
investigated with NATS.							
Design principle i: Optimise protocols for	Not met	Partial	Met				
deconfliction of simultaneous activations of							
multiple volumes of Special Use Airspace.							
These would be written in to the agreement and m	nanaged by MAM	C.					
Design principle j: Minimise complexity in flight	Not met	Partial	Met				
planning.							
ASM protocols including a CTA and routing points	to circumnavigat	te a MDA would b	e				
implemented.							
Design principle k: Maximise the incorporation	Not met	Partial	Met				
of results of the MOD's supporting airspace trial							
ACP2020-042.							
Different geographical area however ASM principl	es would benefit	from the trial.					

Create Special Use airspace as in option one with	the addition of "fi	illets"	
Description of option			
In addition to the dimensions at option 1, additionaregeneration.	al airspace for air-	to-air refuelling a	nd force
Design principle a: The airspace design must	Not met	Partial	Met
	NOI IIIEI	Failiai	Met
be safe, with any hazards identified and risks			
mitigated such that they are as low as			
reasonably practicable and tolerable.			
The addition of extra airspace does not guarantee benefit.	ex participants w	vill remain within –	- no additional
Design principle b: The training area will be	Not met	Partial	Met
within efficient reach of RAF/United States Air			
Force (Europe) (USAFE) main operating bases.			
, , , , , , , , , , , , , , , , , , , ,	1	•	
Design principle c: Optimise the airspace	Not met	Partial	Met
design to accommodate periodic large-scale,			
multi-domain collective training exercises.			
multi domain concentre training exercises.			
Design principle d: Optimise airspace	Not met	Partial	Met
management (ASM) applying flexible use of			
airspace (FUA) principles and ASM policy.			
Extra segregated airspace constructed for activity	which normally ta	akes place in non-	segregated
airspace.	willon normally to	anco piace in non	Sogrogated
Design principle e: Minimise impact on other	Not met	Partial	Met
airspace users and the network.	NOT THE	railiai	Met
	1400		
The additional areas would infringe on existing rou		Dartial	NASA
Design principle f: Minimise environmental	Not met	Partial	Met
impacts, including noise (where relevant).			
All activity would be above FL85 – no impact			
Design principle g: Minimise environmental	Not met	Partial	Met
impacts, including CO2 emissions.			
Initial indications suggest that suppressing D323,			2 emissions.
Design principle h: Minimise the impact to	Not met	Partial	Met
commercial air traffic flow, sector complexity			
and sector capacity.			
Extra segregated airspace constructed for activity	which normally ta	akes place in non-	segregated
airspace.			
Design principle i: Optimise protocols for	Not met	Partial	Met
deconfliction of simultaneous activations of			
multiple volumes of Special Use Airspace.			
Extra segregated airspace constructed for activity	which normally ta	akes place in non-	segregated
airspace.			
Design principle j: Minimise complexity in flight	Not met	Partial	Met
planning.			
F			
Design principle k: Maximise the incorporation	Not met	Partial	Met
of results of the MOD's supporting airspace trial		- Citial	
ACP2020-042.			
701 LULU-UTL.			

How will we decide which options to progress to the next phase?

Design principle a relates to safety and is priority 1, any options not meeting this will be rejected.

Design principles b,c and e are priority 2 and are about minimising the impact to the network and creating the ability to hold large scale military training exercises. As this is the main aim of this ACP, any options not meeting this will be rejected.

Design options may progress even if DPs with a priority of 3 or lower are not met.

Conclusion

		Design Principle											
		а	b	С	d	е	f	g	h	i	j	k	Accept or reject
Design Option	Option 0												
	Option 1												
	Option 2												
	Option 3												