Swanwick Airspace Improvement Programme Airspace Development 5 LAC West – ATS Route Connectivity Improvements

SAIP AD5 LAC West Connectivity

Gateway documentation: Stage 2 Develop and Assess

Step 2A (ii) Design Principle Evaluation

Roles

Action	Role	Date
Produced	Airspace Change Specialist NATS Future Airspace and ATM	16/11/2018
Reviewed Approved	ATC Lead NATS Swanwick Development	16/11/2018
Reviewed Approved	Development ATCO NATS Swanwick Development	16/11/2018
Reviewed Approved	SAIP AD5 Project Manager L5250 Operations & Airspace Programme Delivery	16/11/2018

Drafting and Publication History

Issue	Month/Year	Changes this issue
1.0	16 Nov	Published to the CAA online portal
2.0	29 Nov	Updated and resubmitted, following clarifications from SARG

Introduction

This document forms part of the document set in accordance with the requirements of the CAP1616 airspace change process.

This document is divided into five main sections, describing design option concepts relating to Birmingham traffic, Heathrow arrivals, high-level ATS routes, TRA 002 arrangements, and combinations of CAS volumes.

It is designed to be read in conjunction with document Step 2A(i) which describes and illustrates each component or combination.

This document aims to provide adequate evidence to satisfy Stage 2 Develop and Assess Gateway, Step 2A Design Principle Evaluation.

See Stage 1 Gateway Design Principles for full details of the six proposed design principles¹.

A green box means 'this design principle has been met by the specified option'

An orange box means 'this design principle has been partially met by the specified option', or

'there would be no significant change'

A red box means 'this design principle has not been met by the specified option'

The first part of this document evaluates each component against the Design Principles (DPs), rejecting the worst-scoring items.

The progression of design components through this evaluation process will then be considered in viable combinations later in the document, concluding with reasonable system options to consider at the next CAP1616 Step 2B Options Appraisal.

¹ Safety is always a design principle – it is not included in this table because it is mandatory.

Baseline Options

1. EGBB Baseline (do nothing)

Option Name: EGBB Baseline (do nothing)			REJECT
Description of option: The current traffic flows relevant to this proposal are the EGB is required to tactically leave CAS between the DTY CTA and Cotswold CTA.	B arrivals and depa	artures which rou	te via MOSUN. Traffic
Design principle 1: Operational: Increase in predictable flight planning for operators and ATC (Priority C)	NOT MET		
No improvement from today's operation.			
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)		PARTIAL	
No resources required.			
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂ emissions where possible (Priority B)		PARTIAL	
No change to existing arrangements,			
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)		PARTIAL	
No change to existing arrangements.			
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)		PARTIAL	
No change to existing arrangements.		•	
Design principle 6: Operational: Full ANSP agreement (Priority B)		PARTIAL	
No change to existing arrangements.		•	

2. EGLL Baseline (do nothing)

Option Name: EGLL Baseline (do nothing)			REJECT
Description of option: The current routes relevant to this proposal bring EGLL arriva full, EGLL arrivals are routed from OCK to BNN, often at late-notice, which can creat			e. If the OCK stack if
Design principle 1: Operational: Increase in predictable flight planning for operators and ATC (Priority C)	NOT MET		
No improvement from today's operation.			
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)		PARTIAL	
No resources required.			
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂ emissions where possible (Priority B)		PARTIAL	
No change to existing arrangements,			
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)		PARTIAL	
No change to existing arrangements.			
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)		PARTIAL	
No change to existing arrangements.			
Design principle 6: Operational: Full ANSP agreement (Priority B)		PARTIAL	
No change to existing arrangements.			·

EGBB Concept Options

The following seven options are all component variations of the same design concept. This option contains indicative routes for EGBB arrivals and departures which are contained within four distinct blocks of CAS. The CAS bases have been chosen to align, where possible, with typical descent and departure profiles. A larger volume of CAS, close to EGBB, has been proposed in order to provide an increased vectoring area.

3. EGBB-1A

Option Name: EGBB-1A			REJECT
Description of option: All proposed new CAS volumes to be Class A	•		
Design principle 1: Operational: Increase in predictable flight planning for operators and ATC (Priority C)			MET
Provides more predictable and optimal flight planning options for EGBB arrivals a	nd departures.		
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)	·		MET
Class A CAS would cause no particular impact on resources.			
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂ emissions where possible (Priority B)		PARTIAL	
The routes would provide a CO ₂ reduction for relevant EGBB traffic, which would I A new FL65 CAS base may cause some GA flights to reroute or fly lower than the		7,000ft.	
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)			MET
The routes would provide a fuel burn benefit (cost saving).			
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)	NOT MET		
Extensive Class A airspace would negatively impact and inhibit GA users.			
Design principle 6: Operational: Full ANSP agreement (Priority B)	NOT MET		
NATS does not intend to propose the introduction of additional low level Class A	CAS in this region.		

4. EGBB-1B

Option Name: EGBB-1B		ACCEPT	and PROGRESS
Description of option: All proposed new CAS volumes to be Class C	•		
Design principle 1: Operational: Increase in predictable flight planning for			MET
operators and ATC (Priority C)			
Provides more predictable and optimal flight planning options for EGBB arrivals a	ind departures.		
Design principle 2: Operational: Minimise resources needed to progress the			MET
proposal (Priority C)			
Class C does not change the resource requirements compared to EGBB-1A.			
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂		PARTIAL	
emissions where possible (Priority B)			
The routes would provide a CO ₂ reduction for relevant EGBB traffic, which would		7,000ft.	
A new FL65 CAS base may cause some GA flights to reroute or fly lower than the	y do today.		
Design principle 4: Economic: Reduce flight plan mileage and associated fuel			MET
uplift/ burn (Priority C)			
The routes would provide a fuel burn benefit (cost saving).			
Design principle 5: Technical: Minimise negative impact on other airspace users		PARTIAL	
(Priority C)			
There would be a partial impact on GA and MoD users which would be managed	accordingly.		
Design principle 6: Operational: Full ANSP agreement (Priority B)			MET
Dependent on where this classification is used - Class C airspace is appropriate f	or SWK upper airsp	pace and is curre	ently well used.
Increased tactical flexibility for EGBB/ TC MIDS.			

5. EGBB-1C

Option Name: EGBB-1C	ACCEPT and PROGRESS			
Description of option: All proposed new CAS volumes to be Class D				
Design principle 1: Operational: Increase in predictable flight planning for operators and ATC (Priority C)			MET	
Provides more predictable and optimal flight planning options for EGBB arrivals at	nd departures.			
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)		PARTIAL		
Additional training may be required if Class D was introduced to areas which do no	ot currently use it i	.e. SWK upper ai	rspace sectors.	
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂ emissions where possible (Priority B)		PARTIAL		
The routes would provide a CO ₂ reduction for relevant EGBB traffic, which would not change below 7,000ft. A new FL65 CAS base may cause some GA flights to reroute or fly lower than they do today.				
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)			MET	
The routes would provide a fuel burn benefit (cost saving).				
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)		PARTIAL		
There would be a partial impact on GA and MoD users which would be managed a	accordingly.			
Design principle 6: Operational: Full ANSP agreement (Priority B)		PARTIAL		
Dependent on where this classification is used - Class D airspace is appropriate for lower airspace where it is already used in the region, i.e. around EGBB. It is not currently used in SWK upper airspace and significant training would be required (additional VFR traffic). Increased tactical flexibility for EGBB/ TC MIDS. VFR traffic is not compatible with currently used trajectory-based controller tools.				

6. EGBB-1D

Option Name: EGBB-1D	REJECT			
Description of option: All proposed new CAS volumes to be Class E				
Design principle 1: Operational: Increase in predictable flight planning for operators and ATC (Priority C)		PARTIAL		
Provides more predictable and optimal flight planning options for EGBB arrivals a Class E airspace due to perceived risks.	nd departures. How	wever operators	may not want to use	
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)		PARTIAL		
Additional training would be required if Class E was introduced to areas which do	not currently use it	t e.g. SWK upper	airspace sectors	
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂ emissions where possible (Priority B)		PARTIAL		
The routes would provide a CO ₂ reduction for relevant EGBB traffic, which would r A new FL65 CAS base may cause some GA flights to reroute or fly lower than the		7,000ft.		
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)		PARTIAL		
The routes would provide a fuel burn benefit (cost saving) however airlines may n	ot choose to use the	hem as much, du	ue to Class E airspace.	
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)		PARTIAL		
Class E airspace would mitigate GA community concern, however it would likely impact upon commercial airspace users. There would also still be some impact on GA and MoD users which would be managed accordingly.				
Design principle 6: Operational: Full ANSP agreement (Priority B)	NOT MET			
Class E airspace is not currently used in SWK airspace, therefore significant retrain controller workload burden. VFR traffic is not compatible with currently used trajectory.			vould be a new	

7. EGBB-1E

Option Name: EGBB-1E			REJECT
Description of option: New routes and CAS to be established H24/ 365; with approp	riate clawback arra	angements	
Design principle 1: Operational: Increase in predictable flight planning for			MET
operators and ATC (Priority C)			
Provides more predictable and optimal flight planning options for EGBB arrivals a	nd departures. Ava	ailable H24.	
Design principle 2: Operational: Minimise resources needed to progress the			MET
proposal (Priority C)			
No additional training or manning requirements due to this timing.			
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂		PARTIAL	
emissions where possible (Priority B)			
The routes would provide a CO ₂ reduction for relevant EGBB traffic H24, which wo		low 7,000ft.	
A new FL65 CAS base may cause some GA flights to reroute or fly lower than the	y do today.		
Design principle 4: Economic: Reduce flight plan mileage and associated fuel			MET
uplift/ burn (Priority C)			
The routes would provide the maximum possible fuel burn benefit (cost saving).			
Design principle 5: Technical: Minimise negative impact on other airspace users	NOT MET		
(Priority C)			
H24 operations would cause the largest impact to MoD and GA airspace users.			
Design principle 6: Operational: Full ANSP agreement (Priority B)		PARTIAL	
Maximum usage and tactical flexibility for SWK/ BIRMINGHAM RADAR/ TC MIDS	6. Largest impact of	on MoD and GA a	irspace users.

8. EGBB-1F

Option Name: EGBB-1F	ACCEPT and PROGRESS			
Description of option: New routes and CAS to be established evenings/ overnights/	mornings, 7 days a	week,; with app	ropriate clawback	
arrangements				
Design principle 1: Operational: Increase in predictable flight planning for			MET	
operators and ATC (Priority C)				
Provides more predictable and optimal flight planning options for EGBB arrivals at	nd departures. Not	available H24.		
Design principle 2: Operational: Minimise resources needed to progress the			MET	
proposal (Priority C)				
No additional training or manning requirements due to FUA timings, however activ	vation/deactivation	requires resour	ce to manage.	
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂		PARTIAL		
emissions where possible (Priority B)				
The routes would provide a CO ₂ reduction for these time periods for relevant EGB	B traffic, which wοι	uld not change b	elow 7,000ft.	
A new FL65 CAS base may cause some GA flights to reroute or fly lower than they	y do today.			
Design principle 4: Economic: Reduce flight plan mileage and associated fuel			MET	
uplift/ burn (Priority C)				
The routes would provide a fuel burn benefit (cost saving) but less often than EGE	BB-1E and 1G.			
Design principle 5: Technical: Minimise negative impact on other airspace users		PARTIAL		
(Priority C)				
Timings would cause a partial impact to MoD and GA airspace users, outside their	r typical core daytir	me operating ho	urs.	
Design principle 6: Operational: Full ANSP agreement (Priority B)		PARTIAL		
Slightly limited usage and tactical flexibility for Birmingham Radar/ TC MIDS.				

9. EGBB-1G

Option Name: EGBB-1G	ACCEPT and PROGRESS
Description of option: New routes and CAS to be established evenings/ overnights/ appropriate clawback arrangements	/ mornings during the week, and H24 at weekends; with
Design principle 1: Operational: Increase in predictable flight planning for operators and ATC (Priority C)	MET
Provides more predictable and optimal flight planning options for EGBB arrivals a Not available 24/7.	and departures, mimicking current ATSOCAS availability.
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)	MET
No additional training or manning requirements due to FUA timings, however acti	tivation/deactivation requires resource to manage.
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂ emissions where possible (Priority B)	PARTIAL
The routes would provide a CO ₂ reduction for these time periods for relevant EGB A new FL65 CAS base may cause some GA flights to reroute or fly lower than the	
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)	MET
The routes would provide a fuel burn benefit (cost saving) more often than EGBB	3-1F.
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)	PARTIAL
The timings would cause a partial impact to MoD and GA airspace users (less that but potentially impacting GA at weekends.	nan EGBB-1F), outside MoD core weekday daytime hours
Design principle 6: Operational: Full ANSP agreement (Priority B)	PARTIAL
Limited usage and tactical flexibility for EGBB/ TC MIDS (more flexibility than EG	BB-1F, also more potential GA impact).

The following seven options are all component variations of the same design concept. This option contains the same indicative routes for EGBB arrivals and departures as the first sub-options; EGBB-1A – EGBB-1G. However, the segment of CAS close to EGBB has been reduced in size, in order to reduce the amount of new CAS required.

10. EGBB-2A

Option Name: EGBB-2A			REJEC ⁻
Description of option: All proposed new CAS volumes to be Class A			
Design principle 1: Operational: Increase in predictable flight planning for			MET
operators and ATC (Priority C)			
Provides more predictable and optimal flight planning options for EGBB arrivals a	and departures.		
Design principle 2: Operational: Minimise resources needed to progress the			MET
proposal (Priority C)			
Class A CAS would cause no particular impact on resources.			
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂		PARTIAL	
emissions where possible (Priority B)			
The routes would provide a CO ₂ reduction for relevant EGBB traffic, which would	not change below	7,000ft.	
A new FL65 CAS base may cause some GA flights to reroute or fly lower than the	y do today.		
Design principle 4: Economic: Reduce flight plan mileage and associated fuel			MET
uplift/ burn (Priority C)			
The routes would provide a fuel burn benefit (cost saving).			
Design principle 5: Technical: Minimise negative impact on other airspace users	NOT MET		
(Priority C)			
Extensive Class A airspace would negatively impact and inhibit GA users.			
Design principle 6: Operational: Full ANSP agreement (Priority B)	NOT MET		
NATS does not intend to propose the introduction of additional low level Class A	CAS in this region.	_	•

11. EGBB-2B

Oution November FORD OD	1		
Option Name: EGBB-2B		ACCEPT	and PROGRESS
Description of option: All proposed new CAS volumes to be Class C			
Design principle 1: Operational: Increase in predictable flight planning for			MET
operators and ATC (Priority C)			
Provides more predictable and optimal flight planning options for EGBB arrivals	and departures.		
Design principle 2: Operational: Minimise resources needed to progress the			MET
proposal (Priority C)			
Class C does not change the resource requirements compared to EGBB-2A.			
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂		PARTIAL	
emissions where possible (Priority B)			
The routes would provide a CO2 reduction for relevant EGBB traffic, which would	not change below	7,000ft.	
A new FL65 CAS base may cause some GA flights to reroute or fly lower than the	ey do today.		
Design principle 4: Economic: Reduce flight plan mileage and associated fuel			MET
uplift/ burn (Priority C)			
The routes would provide a fuel burn benefit (cost saving).			
Design principle 5: Technical: Minimise negative impact on other airspace users		PARTIAL	
(Priority C)			
The amount of new CAS has been reduced in order to reduce the impact on the	A community. Th	ere would still be	some impact on GA
and MoD users which would have to be managed accordingly.	·		
Design principle 6: Operational: Full ANSP agreement (Priority B)			MET
Dependent on where this classification is used - Class C airspace appropriate for	SWK upper airspa	ce and is current	tly well used.
Increased tactical flexibility for EGBB/ TC MIDS.	•		

12. EGBB-2C

Option Name: EGBB-2C		ACCEPT 8	and PROGRESS	
Description of option: All proposed new CAS volumes to be Class D				
Design principle 1: Operational: Increase in predictable flight planning for			MET	
operators and ATC (Priority C)				
Provides more predictable and optimal flight planning options for EGBB arrivals	and departures.			
Design principle 2: Operational: Minimise resources needed to progress the		PARTIAL		
proposal (Priority C)				
Additional training may be required if Class D was introduced to areas which do	not currently use it i.e.	SWK upper air	rspace sectors.	
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂		PARTIAL		
emissions where possible (Priority B)				
The routes would provide a CO ₂ reduction for relevant EGBB traffic, which would	not change below 7,0	00ft.		
A new FL65 CAS base may cause some GA flights to reroute or fly lower than the				
Design principle 4: Economic: Reduce flight plan mileage and associated fuel			MET	
uplift/ burn (Priority C)				
The routes would provide a fuel burn benefit (cost saving).				
Design principle 5: Technical: Minimise negative impact on other airspace users		PARTIAL		
(Priority C)				
The amount of new CAS has been reduced in order to reduce the impact on the	GA community. There	e would still be	some impact on GA	
and MoD users which would be managed accordingly.	·			
Design principle 6: Operational: Full ANSP agreement (Priority B)	-	PARTIAL		
Dependent on where this classification is used - Class D airspace is appropriate for lower airspace where it is already used in the region i.e.				
around EGBB. It is not currently used in SWK upper airspace and significant training would be required (additional VFR traffic).				
Increased tactical flexibility for EGBB/ TC MIDS. VFR traffic is not compatible with currently used trajectory-based controller tools.				

13. EGBB-2D

Option Name: EGBB-2D			REJECT		
Description of option: All proposed new CAS volumes to be Class E					
Design principle 1: Operational: Increase in predictable flight planning for		PARTIAL			
operators and ATC (Priority C)					
Provides more predictable and optimal flight planning options for EGBB arrivals a	nd departures. Ho	wever operators	may not want to use		
Class E airspace due to perceived risks.					
Design principle 2: Operational: Minimise resources needed to progress the		PARTIAL			
proposal (Priority C)					
Additional training would be required if Class E was introduced to areas which do	not currently use i	t e.g. SWK upper	airspace sectors.		
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂		PARTIAL			
emissions where possible (Priority B)					
The routes would provide a CO ₂ reduction for relevant EGBB traffic, which would r	not change below ?	7,000ft.			
A new FL65 CAS base may cause some GA flights to reroute or fly lower than the	y do today.				
Design principle 4: Economic: Reduce flight plan mileage and associated fuel		PARTIAL			
uplift/ burn (Priority C)					
The routes would provide a fuel burn benefit (cost saving) however airlines may n	ot choose to use t	hem as much, dı	ue to Class E airspace.		
Design principle 5: Technical: Minimise negative impact on other airspace users		PARTIAL			
(Priority C)					
The amount of new CAS has been reduced in order to reduce the impact on the G	A community. Cla	ss E airspace wo	uld also mitigate GA		
community concern, however it would likely impact upon commercial airspace us	ers. There would	also still be some	e impact on GA and		
MoD users which would be managed accordingly.					
Design principle 6: Operational: Full ANSP agreement (Priority B)	NOT MET				
	Class E airspace is not currently used in SWK airspace, therefore significant retraining would be required, and there would be a new				
controller workload burden. VFR traffic is not compatible with currently used trajectory-based controller tools.					

14. EGBB-2E

Option Name: EGBB-2E			REJECT
Description of option: New routes and CAS to be established H24/ 365; with approp	riate clawback arr	angements	
Design principle 1: Operational: Increase in predictable flight planning for			MET
operators and ATC (Priority C)			
Provides more predictable and optimal flight planning options for EGBB arrivals a	nd departures. Ava	ailable H24.	
Design principle 2: Operational: Minimise resources needed to progress the			MET
proposal (Priority C)			
No additional training or manning requirements due to this timing.			
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂		PARTIAL	
emissions where possible (Priority B)			
The routes would provide a CO_2 reduction for relevant EGBB traffic, which would r		7,000ft.	
A new FL65 CAS base may cause some GA flights to reroute or fly lower than the	y do today.		
Design principle 4: Economic: Reduce flight plan mileage and associated fuel			MET
uplift/ burn (Priority C)			
The routes would provide the maximum possible fuel burn benefit (cost saving).			
Design principle 5: Technical: Minimise negative impact on other airspace users	NOT MET		
(Priority C)			
H24 operations would cause the largest impact to MoD and GA airspace users.			
Design principle 6: Operational: Full ANSP agreement (Priority B)		PARTIAL	
Maximum usage and tactical flexibility for SWK/ BIRMINGHAM RADAR/ TC MIDS	. Largest impact of	n MoD and GA a	airspace users.

15. EGBB-2F

Option Name: EGBB-2F		ACCEPT	and PROGRESS
Description of option: New routes and CAS to be established evenings/ overnights/	mornings, 7 days a	week; with appr	opriate clawback
arrangements		• • •	
Design principle 1: Operational: Increase in predictable flight planning for			MET
operators and ATC (Priority C)			
Provides more predictable and optimal flight planning options for EGBB arrivals a	nd departures. Not	available H24.	
Design principle 2: Operational: Minimise resources needed to progress the			MET
proposal (Priority C)			
No additional training or manning requirements due to FUA timings, however acti	vation/deactivation	requires resour	ce to manage.
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂		PARTIAL	
emissions where possible (Priority B)			
The routes would provide a CO ₂ reduction for these time periods for relevant EGB	B traffic, which wou	uld not change b	elow 7,000ft.
A new FL65 CAS base may cause some GA flights to reroute or fly lower than the	y do today.		
Design principle 4: Economic: Reduce flight plan mileage and associated fuel			MET
uplift/ burn (Priority C)			
The routes would provide a fuel burn benefit (cost saving) but less often than EGI	3B-2E and 2G.		
Design principle 5: Technical: Minimise negative impact on other airspace users		PARTIAL	
(Priority C)			
The amount of new CAS has been reduced in order to reduce the impact on the G			
Timings would cause a partial impact to MoD and GA airspace users, outside the	ir typical core daytir	me operating ho	urs
Design principle 6: Operational: Full ANSP agreement (Priority B)		PARTIAL	
Slightly limited usage and tactical flexibility for Birmingham Radar/ TC MIDS.	·	·	·

16. EGBB-2G

Option Name: EGBB-2G	ACCEPT and PROGRESS
Description of option: New routes and CAS to be established evenings/ overnights/ appropriate clawback arrangements	mornings during the week, and H24 at weekends; with
Design principle 1: Operational: Increase in predictable flight planning for operators and ATC (Priority C)	MET
Provides more predictable and optimal flight planning options for EGBB arrivals a Not available 24/7.	nd departures, mimicking current ATSOCAS availability.
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)	MET
No additional training or manning requirements due to FUA timings, however active	ivation/deactivation requires resource to manage.
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂ emissions where possible (Priority B)	PARTIAL
The routes would provide a CO_2 reduction for these time periods for relevant EGB A new FL65 CAS base may cause some GA flights to reroute or fly lower than the	
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)	MET
The routes would provide a fuel burn benefit (cost saving) more often than EGBB-	-2F.
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)	PARTIAL
The amount of new CAS has been reduced in order to reduce the impact on the G to MoD and GA airspace users (less than EGBB-2F), outside MoD core weekday d	
Design principle 6: Operational: Full ANSP agreement (Priority B)	PARTIAL
Limited usage and tactical flexibility for EGBB/ TC MIDS (more flexibility than EGB	BB-2F, also more potential GA impact).

The following seven options are all variations of the same design option. This option contains a single bidirectional route for EGBB arrivals and departures; thus minimising new CAS required.

17. EGBB-3A

Option Name: EGBB-3A	REJECT		
Description of option: All proposed new CAS volumes to be Class A			
Design principle 1: Operational: Increase in predictable flight planning for operators and ATC (Priority C)	NOT MET		
Provides predictable and optimal flight planning options for EGBB arrivals and del bidirectional flows would be significantly compromised due to lack of systemisat workload.		,	o ,
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)			MET
Class A CAS would cause no particular impact on resources.			
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂ emissions where possible (Priority B)		PARTIAL	
The routes would provide a CO ₂ reduction for relevant EGBB traffic, which would reduce A new FL65 CAS base may cause some GA flights to reroute or fly lower than the	J	7,000ft.	
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)	-		MET
The routes would provide a fuel burn benefit (cost saving).			
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)	NOT MET		
Extensive Class A airspace would negatively impact and inhibit GA users. Airspace with concepts EGBB-1 and EGBB-2.	e required would n	ot be significant	tly reduced compared
Design principle 6: Operational: Full ANSP agreement (Priority B)	NOT MET		
NATS does not intend to propose the introduction of additional low level Class A	CAS in this region.		

18. EGBB-3B

Option Name: EGBB-3B			REJECT
Description of option: All proposed new CAS volumes to be Class C	•		
Design principle 1: Operational: Increase in predictable flight planning for operators and ATC (Priority C)	NOT MET		
Provides predictable and optimal flight planning options for EGBB arrivals and debidirectional flows would be significantly compromised due to lack of systemisat workload.			
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)			MET
Class C does not change the resource requirements compared to EGBB-3A.			
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂ emissions where possible (Priority B)		PARTIAL	
The routes would provide a CO ₂ reduction for relevant EGBB traffic, which would a new FL65 CAS base may cause some GA flights to reroute or fly lower than the		7,000ft.	
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)			MET
The routes would provide a fuel burn benefit (cost saving).			
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)		PARTIAL	
There would be a partial impact on GA and MoD users which would be managed reduced compared with concepts EGBB-1 and EGBB-2.	accordingly. Airsp	ace required wo	ould not be significantly
Design principle 6: Operational: Full ANSP agreement (Priority B)			MET
Dependent on where this classification is used - Class C airspace is appropriate for	or SWK upper airsp	pace and is curre	ently well used.

19. EGBB-3C

Option Name: EGBB-3C			REJECT
Description of option: All proposed new CAS volumes to be Class D	•		
Design principle 1: Operational: Increase in predictable flight planning for operators and ATC (Priority C)	NOT MET		
Provides predictable and optimal flight planning options for EGBB arrivals and de bidirectional flows would be significantly compromised due to lack of systemisat workload.			
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)		PARTIAL	
Additional training may be required if Class D was introduced to areas which do r	not currently use it	i.e. SWK upper a	irspace sectors.
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂ emissions where possible (Priority B)		PARTIAL	
The routes would provide a CO ₂ reduction for relevant EGBB traffic, which would A new FL65 CAS base may cause some GA flights to reroute or fly lower than the		7,000ft.	
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)			MET
The routes would provide a fuel burn benefit (cost saving).	•	*	
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)		PARTIAL	
There would be a partial impact on GA and MoD users which would be managed reduced compared with concepts EGBB-1 and EGBB-2.	accordingly. Airsp	ace required wo	uld not be significantly
Design principle 6: Operational: Full ANSP agreement (Priority B)		PARTIAL	
Dependent on where this classification is used - Class D airspace is appropriate f around EGBB. It is not currently used in SWK upper airspace and training would b Increased tactical flexibility for EGBB/ TC MIDS. VFR traffic is not compatible with	e required (additio	nal VFR traffic).	•

20. EGBB-3D

Option Name: EGBB-3D			REJECT
Description of option: All proposed new CAS volumes to be Class E	•		
Design principle 1: Operational: Increase in predictable flight planning for operators and ATC (Priority C)	NOT MET		
Provides predictable and optimal flight planning options for EGBB arrivals and de airspace due to perceived risks. ATC ability to manage busy bidirectional flows was systemisation, requiring more tactical vectoring and an increased workload.			
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)		PARTIAL	
Additional training would be required if Class E was introduced to areas which do	not currently use i	t e.g. SWK upper	r airspace sectors.
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂ emissions where possible (Priority B)		PARTIAL	
The routes would provide a CO ₂ reduction for relevant EGBB traffic, which would a new FL65 CAS base may cause some GA flights to reroute or fly lower than the		7,000ft.	
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)		PARTIAL	
The routes would provide a fuel burn benefit (cost saving) however airlines may n	ot choose to use t	hem as much, di	ue to Class E airspace.
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)		PARTIAL	
Class E airspace would mitigate GA community concern, however it would likely i required would not be significantly reduced compared with concepts EGBB-1 and		nercial airspace (users. Airspace
Design principle 6: Operational: Full ANSP agreement (Priority B)	NOT MET		
Class E airspace is not currently used in SWK airspace, therefore significant retraicontroller workload burden. VFR traffic is not compatible with currently used traje			would be a new

21. EGBB-3E

Option Name: EGBB-3E	REJECT		
Description of option: New routes and CAS to be established H24/ 365; with approp	riate clawback arra	angements	
Design principle 1: Operational: Increase in predictable flight planning for operators and ATC (Priority C)	NOT MET		
Provides predictable and optimal flight planning options for EGBB arrivals and depidirectional flows would be significantly compromised due to lack of systemisat workload.			
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)			MET
No additional training or manning requirements due to this timing.			
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂ emissions where possible (Priority B)		PARTIAL	
The routes would provide a CO_2 reduction for relevant EGBB traffic, which would I A new FL65 CAS base may cause some GA flights to reroute or fly lower than the		7,000ft.	
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)			MET
The routes would provide the maximum possible fuel burn benefit (cost saving).			
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)	NOT MET		
H24 operations would cause the largest impact to MoD and GA airspace users.	•	•	
Design principle 6: Operational: Full ANSP agreement (Priority B)		PARTIAL	
Maximum usage and tactical flexibility for SWK/ BIRMINGHAM RADAR/ TC MIDS	. Largest impact o	n MoD and GA a	airspace users.

22. EGBB-3F

Option Name: EGBB-3F			REJECT
Description of option: New routes and CAS to be established evenings/ overnights/ arrangements	mornings, 7 days a	week; with appr	opriate clawback
Design principle 1: Operational: Increase in predictable flight planning for operators and ATC (Priority C)	NOT MET		
Provides predictable and optimal flight planning options for EGBB arrivals and dependence ATC ability to manage busy bidirectional flows would be significantly contactical vectoring and an increased workload.			sation, requiring more
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)			MET
No additional training or manning requirements due to FUA timings, however acti	vation/deactivation	n requires resour	ce to manage.
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂ emissions where possible (Priority B)		PARTIAL	
The routes would provide a CO_2 reduction for these time periods for relevant EGB A new FL65 CAS base may cause some GA flights to reroute or fly lower than the		uld not change b	pelow 7,000ft.
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)			MET
The routes would provide a fuel burn benefit (cost saving) but less often than EGE	3B-3E and 3G.		
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)		PARTIAL	
Timings would cause a partial impact to MoD and GA airspace users, outside the	r typical core dayti	me operating ho	urs
Design principle 6: Operational: Full ANSP agreement (Priority B)		PARTIAL	
Slightly limited usage and tactical flexibility for Birmingham Radar/ TC MIDS.			

23. EGBB-3G

Option Name: EGBB-3G			REJECT
Description of option: New routes and CAS to be established evenings/ overnights/ appropriate clawback arrangements	mornings during th	ne week, and H24	4 at weekends; with
Design principle 1: Operational: Increase in predictable flight planning for operators and ATC (Priority C)	NOT MET		
Provides predictable and optimal flight planning options for EGBB arrivals and del However ATC ability to manage busy bidirectional flows would be significantly co tactical vectoring and an increased workload. Not available 24/7.			
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)			MET
No additional training or manning requirements due to FUA timings, however acti	vation/deactivation	n requires resour	ce to manage.
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂ emissions where possible (Priority B)		PARTIAL	
The routes would provide a CO ₂ reduction for these time periods for relevant EGB A new FL65 CAS base may cause some GA flights to reroute or fly lower than the		uld not change b	pelow 7,000ft.
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)			MET
The routes would provide a fuel burn benefit (cost saving) more often than EGBB-	-3F.		
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)		PARTIAL	
The timings would cause a partial impact to MoD and GA airspace users (less that but potentially impacting GA at weekends.	an EGBB-3F), outsid	de MoD core wee	ekday/ daytime hours
Design principle 6: Operational: Full ANSP agreement (Priority B)		PARTIAL	
Limited usage and tactical flexibility for Birmingham Radar/ TC MIDS (more flexibility than EGBB-3F, also more potential GA impact).			

EGLL Concept Options

The following seven options are all variations of the same design concept. This design concept contains unidirectional eastbound OCK offload route(s) for EGLL arrivals. Two separate blocks of CAS with different base levels and an en-route contingency hold would also be introduced.

24. EGLL-1A

Option Name: EGLL-1A			REJECT
Description of option: All proposed new CAS volumes to be Class A	•		
Design principle 1: Operational: Increase in predictable flight planning for operators and ATC (Priority C)			MET
The offload concept would provide flightplannable options for the tactical balanci consideration of the desired descent profile.	ng of flows with ve	ectoring flexibility	and adequate
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)			MET
Class A CAS would cause no particular impact on resources.			
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂ emissions where possible (Priority B)			MET
The routes would provide a CO ₂ reduction for relevant EGLL arrivals. They would which would ensure the flow balance does not exceed the equivalent of today's st			imiting mechanism
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)			MET
The proposed route is shorter than the equivalent flightplannable route within UK saving) depending on oceanic exit point location.	airspace, and can	therefore enable	a fuel saving (cost
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)	NOT MET		
The lateral design is simple. However, extensive Class A airspace would negative	ly impact and inhib	oit GA users.	
Design principle 6: Operational: Full ANSP agreement (Priority B)	NOT MET		
NATS does not intend to propose the introduction of additional low level Class A (CAS in this region.		

25. EGLL-1B

Option Name: EGLL-1B	<i>A</i>	ACCEPT and PROGRESS
Description of option: All proposed new CAS volumes to be Class C	•	
Design principle 1: Operational: Increase in predictable flight planning for operators and ATC (Priority C)		MET
The offload concept would provide flightplannable options for the tactical balanc consideration of the desired descent profile.	ng of flows with vector	ring flexibility and adequate
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)		MET
Class C does not change the resource requirements compared to EGLL-1A.		
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂ emissions where possible (Priority B)		MET
The routes would provide a CO ₂ reduction for relevant EGLL arrivals. They would which would ensure the flow balance does not exceed the equivalent of today's s		00ft due to a limiting mechanism
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)		MET
The proposed route is shorter than the equivalent flightplannable route within UK saving) depending on oceanic exit point location.	airspace, and can ther	efore enable a fuel saving (cost
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)		MET
The lateral design is simple. There would likely be an impact on MoD operations routing OAT; this would be coordinated accordingly.	within this area, such a	as northbound military traffic
Design principle 6: Operational: Full ANSP agreement (Priority B)	PA	ARTIAL
Dependent on where this classification is used - Class C airspace is appropriate f Reduction in workload and ATC complexity for NATS.	or SWK upper airspace	and is currently well used.

26. EGLL-1C

Option Name: EGLL-1C			REJECT
Description of option: All proposed new CAS volumes to be Class D			
Design principle 1: Operational: Increase in predictable flight planning for			MET
operators and ATC (Priority C)			
The offload concept would provide flightplannable options for the tactical balancial consideration of the desired descent profile.	ng of flows with ve	ctoring flexibility	and adequate
Design principle 2: Operational: Minimise resources needed to progress the		PARTIAL	
proposal (Priority C)			
Additional training would be required if Class D was introduced to areas which do	not currently use i	t i.e. SWK upper	airspace sectors.
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂			MET
emissions where possible (Priority B)			
The routes would provide a CO ₂ reduction for relevant EGLL arrivals. They would			imiting mechanism
which would ensure the flow balance does not exceed the equivalent of today's st	ack swap numbers	3.	
Design principle 4: Economic: Reduce flight plan mileage and associated fuel			MET
uplift/ burn (Priority C)			
The proposed route is shorter than the equivalent flightplannable route within UK	airspace, and can t	therefore enable	a fuel saving (cost
saving) depending on oceanic exit point location.	T		
Design principle 5: Technical: Minimise negative impact on other airspace users		PARTIAL	
(Priority C)			
The lateral design is simple. There would likely be an impact on MoD operations were	within this area, su	ch as northboun	d military traffic
routing OAT; this would be coordinated accordingly.			
Design principle 6: Operational: Full ANSP agreement (Priority B)	NOT MET		
Class D is not currently used in SWK upper airspace and training would be require			
Reduction in workload and ATC complexity for NATS. VFR traffic is not compatible	e with current traje	ctory-based con	troller tools.

27. EGLL-1D

Option Name: EGLL-1D			REJECT
Description of option: All proposed new CAS volumes to be Class E	•		
Design principle 1: Operational: Increase in predictable flight planning for operators and ATC (Priority C)		PARTIAL	
The offload concept would provide flightplannable options for the tactical balanci descent profile. However operators may not want to use Class E airspace due to		equate consider	ation of the desired
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)		PARTIAL	
Additional training would be required if Class E was introduced to areas which do	not currently use it	i.e. SWK upper	airspace sectors.
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂ emissions where possible (Priority B)			MET
The routes would provide a CO ₂ reduction for relevant EGLL arrivals. They would which would ensure the flow balance does not exceed the equivalent of today's s			limiting mechanism
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)		PARTIAL	
The proposed route is shorter than the equivalent flightplannable route within UK saving) depending on oceanic exit point location. However airlines may not choose			
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)		PARTIAL	
The lateral design is simple. There would likely be an impact on MoD operations routing OAT; this would be coordinated accordingly.	within this area, su	ch as northboun	d military traffic
Design principle 6: Operational: Full ANSP agreement (Priority B)	NOT MET		
Class E airspace is not currently used in SWK airspace, therefore significant retraining would be required, and there would be a new controller workload burden. VFR traffic is not compatible with current trajectory-based controller tools.			

28. EGLL-1E

Option Name: EGLL-1E			REJECT
Description of option: CDR1 route status for the unidirectional offload route(s)			
Design principle 1: Operational: Increase in predictable flight planning for	NOT MET		
operators and ATC (Priority C)			
This concept would provide flightplannable options for aircraft operators.			
It would not allow for tactical balancing of flows by ATC and would be inflexible.			
Design principle 2: Operational: Minimise resources needed to progress the		PARTIAL	
proposal (Priority C)			
This concept could increase the ATC resources needed, to handle peak demand of	on this route.		
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂			MET
emissions where possible (Priority B)			
The routes would provide a CO ₂ reduction for relevant EGLL arrivals. They would			
which would ensure the number of flights using the route does not exceed the eq	uivalent of today's	stack swap num	nbers.
Design principle 4: Economic: Reduce flight plan mileage and associated fuel			MET
uplift/ burn (Priority C)			
The proposed route is shorter than the equivalent flightplannable route within UK	airspace, and can	therefore enable	a fuel saving (cost
saving) depending on oceanic exit point location.		D.A.D.T.I.I.	
Design principle 5: Technical: Minimise negative impact on other airspace users		PARTIAL	
(Priority C)	1 1 111	· · · · · · · · · · · · · · · · · · ·	
There would likely be an impact on MoD operations within this area, such as north	nbound military tra	iffic routing OAT;	this would be
coordinated accordingly.		T	NACT
Design principle 6: Operational: Full ANSP agreement (Priority B)			MET
Reduction in workload and ATC complexity for NATS (NERL)			

29. EGLL-1F

Option Name: EGLL-1F		ACCEPT	and PROGRESS
Description of option: CDR1/3 route status for the unidirectional offload route(s)	<u>.L</u>		
Design principle 1: Operational: Increase in predictable flight planning for			MET
operators and ATC (Priority C)			
This concept would provide flightplannable options for aircraft operators, and wo	uld allow for tactic	al balancing of fl	lows by ATC.
Design principle 2: Operational: Minimise resources needed to progress the		PARTIAL	
proposal (Priority C)			
This concept could increase the ATC resources needed, to handle peak demand	on this route.		
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂			MET
emissions where possible (Priority B)		<u> </u>	
The routes would provide a CO ₂ reduction for relevant EGLL arrivals. They would			
which would ensure the number of flights using the route does not exceed the eq	uivalent of today's	stack swap num	
Design principle 4: Economic: Reduce flight plan mileage and associated fuel			MET
uplift/ burn (Priority C)	<u> </u>		
The proposed route is shorter than the equivalent flightplannable route within UK saving) depending on oceanic exit point location.	airspace, and can	therefore enable	e a fuel saving (cost
Design principle 5: Technical: Minimise negative impact on other airspace		PARTIAL	
users (Priority C)			
There would likely be an impact on MoD operations within this area, such as nortle coordinated accordingly.	nbound military tra	ffic routing OAT;	; this would be
Design principle 6: Operational: Full ANSP agreement (Priority B)			MET
NATS accepts this option and it matches similar CDRs crossing the NWMTA.			

30. EGLL-1G

Option Name: EGLL-1G	ACCEPT and PROGRES			
Description of option: CDR3 route status for the unidirectional offload route(s)				
Design principle 1: Operational: Increase in predictable flight planning for		PARTIAL		
operators and ATC (Priority C)				
This concept would provide predictable flexibility for ATC to be able to offload traf				
CDR3 routes are not available for flight planning; they are not predictable for aircra	aft operators and re	equire airlines to	fuel for alternative	
routes than those potentially available should the offload be needed.				
Design principle 2: Operational: Minimise resources needed to progress the			MET	
proposal (Priority C)				
This option will only be used when the need arises; therefore no particular addition	nal resource is requ	ıired.		
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂			MET	
emissions where possible (Priority B)				
The routes would provide a CO ₂ reduction for relevant EGLL arrivals. They would in			limiting mechanism	
which would ensure the flow balance does not exceed the equivalent of today's st	ack swap numbers	S.		
Design principle 4: Economic: Reduce flight plan mileage and associated fuel		PARTIAL		
uplift/ burn (Priority C)				
This would not reduce flightplan mileage due to its tactical nature. However, actual	al fuel burn may be	e reduced (cost l	benefit).	
Design principle 5: Technical: Minimise negative impact on other airspace users		PARTIAL		
(Priority C)				
There would likely be an impact on MoD operations within this area, such as north	There would likely be an impact on MoD operations within this area, such as northbound military traffic routing OAT; this would be			
coordinated accordingly.				
Design principle 6: Operational: Full ANSP agreement (Priority B)			MET	
NATS accepts this concept due to its flexibility.				

The following seven options are all variations of the same design concept. This design concept contains the same indicative unidirectional OCK offload route(s) and en-route contingency hold for EGLL arrivals as the first EGLL design sub-options; EGLL-1A – EGLL-1G. There would be a single block of CAS, rather than two, with a base of FL145.

31. EGLL-2A

Option Name: EGLL-2A			REJECT
Description of option: All proposed new CAS volumes to be Class A	·		
Design principle 1: Operational: Increase in predictable flight planning for			MET
operators and ATC (Priority C)			
The offload concept would provide flightplannable options for the tactical balance	cing of flows with ve	ectoring flexibility	and adequate
consideration of the desired descent profile.			
Design principle 2: Operational: Minimise resources needed to progress the			MET
proposal (Priority C)			
Class A CAS would cause no particular impact on resources.	_		
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂			MET
emissions where possible (Priority B)			
The routes would provide a CO ₂ reduction for relevant EGLL arrivals. They would			limiting mechanism
which would ensure the flow balance does not exceed the equivalent of today's	stack swap number	S.	
Design principle 4: Economic: Reduce flight plan mileage and associated fuel			MET
uplift/ burn (Priority C)			<u> </u>
The proposed route is shorter than the equivalent flightplannable route within Uk	k airspace, and can	therefore enable	a fuel saving (cost
saving) depending on oceanic exit point location.	NICTAMET	•	
Design principle 5: Technical: Minimise negative impact on other airspace users	NOT MET		
(Priority C)	a la discono a de la considera la di	- it OA	
The lateral design is simple. However, extensive Class A airspace would negative		oit GA users.	
Design principle 6: Operational: Full ANSP agreement (Priority B)	NOT MET		
NATS does not intend to propose the introduction of additional low level Class A	CAS in this region.		

32. EGLL-2B

Option Name: EGLL-2B		ACCEPT a	nd PROGRESS
Description of option: All proposed new CAS volumes to be Class C	•		
Design principle 1: Operational: Increase in predictable flight planning for operators and ATC (Priority C)			MET
The offload concept would provide flightplannable options for the tactical balanc consideration of the desired descent profile.	ing of flows with vec	ctoring flexibility a	and adequate
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)			MET
Class C does not change the resource requirements compared to EGLL-2A.			
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂ emissions where possible (Priority B)			MET
The routes would provide a CO ₂ reduction for relevant EGLL arrivals. They would which would ensure the flow balance does not exceed the equivalent of today's s			miting mechanism
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)			MET
The proposed route is shorter than the equivalent flightplannable route within UK saving) depending on oceanic exit point location.	airspace, and can th	nerefore enable a	fuel saving (cost
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)			MET
The lateral design is simple. There would likely be an impact on MoD operations routing OAT; this would be coordinated accordingly. Impacts would be slightly greater due to the extent of the lower base compared to the lower base comp		h as northbound	military traffic
Design principle 6: Operational: Full ANSP agreement (Priority B)	·	PARTIAL	
Dependent on where this classification is used - Class C airspace is appropriate Reduction in workload and ATC complexity for NATS.	or SWK upper airsp	ace and is current	tly well used.

33. EGLL-2C

Option Name: EGLL-2C			REJECT
Description of option: All proposed new CAS volumes to be Class D	•		
Design principle 1: Operational: Increase in predictable flight planning for			MET
operators and ATC (Priority C)			
The offload concept would provide flightplannable options for the tactical balanc consideration of the desired descent profile.	ing of flows with ve	ectoring flexibility	and adequate
Design principle 2: Operational: Minimise resources needed to progress the		PARTIAL	
proposal (Priority C)			
Additional training would be required if Class D was introduced to areas which do	not currently use i	t i.e. SWK upper	airspace sectors.
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂			MET
emissions where possible (Priority B)			
The routes would provide a CO ₂ reduction for relevant EGLL arrivals. They would	not change below	7,000ft due to a	limiting mechanism
which would ensure the flow balance does not exceed the equivalent of today's s	tack swap number	S.	
Design principle 4: Economic: Reduce flight plan mileage and associated fuel			MET
uplift/ burn (Priority C)			
The proposed route is shorter than the equivalent flightplannable route within UK	airspace, and can	therefore enable	a fuel saving (cost
saving) depending on oceanic exit point location.			
Design principle 5: Technical: Minimise negative impact on other airspace users		PARTIAL	
(Priority C)			
The lateral design is simple. There would likely be an impact on MoD operations	within this area, su	ch as northboun	d military traffic
routing OAT; this would be coordinated accordingly.			
Impacts would be slightly greater due to the extent of the lower base compared to	o Concept EGLL-1.		
Design principle 6: Operational: Full ANSP agreement (Priority B)	NOT MET		
Class D is not currently used in SWK upper airspace and training would be require		·	
Reduction in workload and ATC complexity for NATS. VFR traffic is not compatib	le with current traje	ectory-based con	troller tools.

34. EGLL-2D Option - Design Principle Evaluation

Option Name: EGLL-2D	REJECT
Description of option: All proposed new CAS volumes to be Class E	
Design principle 1: Operational: Increase in predictable flight planning for operators and ATC (Priority C)	PARTIAL
The offload concept would provide flightplannable options for the tactical balanci descent profile. However operators may not want to use Class E airspace due to	
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)	PARTIAL
Additional training would be required if Class E was introduced to areas which do	not currently use it i.e. SWK upper airspace sectors.
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂ emissions where possible (Priority B)	MET
The routes would provide a CO ₂ reduction for relevant EGLL arrivals. They would which would ensure the flow balance does not exceed the equivalent of today's st	
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)	PARTIAL
The proposed route is shorter than the equivalent flightplannable route within UK saving) depending on oceanic exit point location. However airlines may not choose	
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)	PARTIAL
The lateral design is simple. There would likely be an impact on MoD operations routing OAT; this would be coordinated accordingly. Impacts would be slightly greater due to the extent of the lower base compared to	
Design principle 6: Operational: Full ANSP agreement (Priority B)	NOT MET
Class E airspace is not currently used in SWK airspace, therefore significant retrai controller workload burden. VFR traffic is not compatible with current trajectory-t	

35. EGLL-2E

Option Name: EGLL-2E			REJECT
Description of option: CDR1 route status for the unidirectional offload route(s)			
Design principle 1: Operational: Increase in predictable flight planning for	NOT MET		
operators and ATC (Priority C)			
This concept would provide flightplannable options for aircraft operators.			
It would not allow for tactical balancing of flows by ATC and would be inflexible.			
Design principle 2: Operational: Minimise resources needed to progress the		PARTIAL	
proposal (Priority C)			
This concept could increase the ATC resources needed, to handle peak demand of	on this route.		
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂			MET
emissions where possible (Priority B)			
The routes would provide a CO_2 reduction for relevant EGLL arrivals. They would			
which would ensure the number of flights using the route does not exceed the eq	uivalent of today's s	stack swap num	bers.
Design principle 4: Economic: Reduce flight plan mileage and associated fuel			MET
uplift/ burn (Priority C)			
The proposed route is shorter than the equivalent flightplannable route within UK	airspace, and can t	nerefore enable	a fuel saving (cost
saving) depending on oceanic exit point location.			
Design principle 5: Technical: Minimise negative impact on other airspace users		PARTIAL	
(Priority C)			
There would likely be an impact on MoD operations within this area, such as north	nbound military traf	fic routing OAT;	this would be
coordinated accordingly.			
Impacts would be slightly greater due to the extent of the lower base compared to	Concept EGLL-1.		
Design principle 6: Operational: Full ANSP agreement (Priority B)			MET
Reduction in workload and ATC complexity for NATS (NERL)			

36. EGLL-2F

Option Name: EGLL-2F		ACCEPT	and PROGRESS
Description of option: CDR1/3 route status for the unidirectional offload route(s)	•		
Design principle 1: Operational: Increase in predictable flight planning for			MET
operators and ATC (Priority C)			
This concept would provide flightplannable options for aircraft operators, and wo	uld allow for tactica	al balancing of fl	lows by ATC.
Design principle 2: Operational: Minimise resources needed to progress the		PARTIAL	
proposal (Priority C)			
This concept could increase the ATC resources needed, to handle peak demand of	n this route.		
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂			MET
emissions where possible (Priority B)			
The routes would provide a CO ₂ reduction for relevant EGLL arrivals. They would			
which would ensure the number of flights using the route does not exceed the eq	uivalent of today's	stack swap num	nbers.
Design principle 4: Economic: Reduce flight plan mileage and associated fuel			MET
uplift/ burn (Priority C)			
The proposed route is shorter than the equivalent flightplannable route within UK	airspace, and can t	herefore enable	a fuel saving (cost
saving) depending on oceanic exit point location.			
Design principle 5: Technical: Minimise negative impact on other airspace		PARTIAL	
users (Priority C)			
There would likely be an impact on MoD operations within this area, such as north	nbound military traf	ffic routing OAT;	this would be
coordinated accordingly.			
Impacts would be slightly greater due to the extent of the lower base compared to	Concept EGLL-1.		
Design principle 6: Operational: Full ANSP agreement (Priority B)			MET
NATS accepts this option and it matches similar CDRs crossing the NWMTA.	•		

37. EGLL-2G Option - Design Principle Evaluation

Option Name: EGLL-1G	ACCEPT and PROGRESS
Description of option: CDR3 route status for the unidirectional offload route(s)	
Design principle 1: Operational: Increase in predictable flight planning for	PARTIAL
operators and ATC (Priority C)	
This concept would provide predictable flexibility for ATC to be able to offload traf CDR3 routes are not available for flight planning; they are not predictable for aircra routes than those potentially available should the offload be needed.	
Design principle 2: Operational: Minimise resources needed to progress the	MET
proposal (Priority C)	
This option will only be used when the need arises; therefore no particular addition	
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂	MET
emissions where possible (Priority B)	
The routes would provide a CO ₂ reduction for relevant EGLL arrivals. They would which would ensure the flow balance does not exceed the equivalent of today's st	
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)	PARTIAL
This would not reduce flightplan mileage due to its tactical nature. However, actu	ual fuel burn may be reduced (cost benefit).
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)	PARTIAL
There would likely be an impact on MoD operations within this area, such as north coordinated accordingly. Impacts would be slightly greater due to the extent of the lower base compared to	•
Design principle 6: Operational: Full ANSP agreement (Priority B)	MET
NATS accepts this concept due to its flexibility.	

The following three options are all variations of the same design concept, where no new CAS would be required. Compared with concepts EGLL-1 and EGLL-2, it considers a more northerly orientation of an indicative unidirectional OCK offload route, with no en-route contingency hold.

38. EGLL-3A

Option Name: EGLL-3A	REJECT			
Description of option: CDR1 route status for the unidirectional offload route(s)				
Design principle 1: Operational: Increase in predictable flight planning for	NOT MET			
operators and ATC (Priority C)				
This concept would provide flightplannable options for aircraft operators, but wou				
The inability to descend means the traffic must join the existing flow further north	than EGLL-1 or E0	GLL-2, increasing	the likelihood of	
conflictions with existing north-south traffic flows such as EGCC southbound dep	artures.			
Design principle 2: Operational: Minimise resources needed to progress the	NOT MET			
proposal (Priority C)				
The sector flow would change from Sector 35 – AC Sector 5 – TC COWLY, to Sec				
This could require significant changes to current sector boundaries and ATC proc	edures, leading to	a much larger A	TCO training	
requirement than option concepts EGLL-1 or EGLL-2.	•			
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂			MET	
emissions where possible (Priority B)				
The routes would provide a CO ₂ reduction for relevant EGLL arrivals. They would				
which would ensure the number of flights using the route does not exceed the eq	uivalent of today's	stack swap num		
Design principle 4: Economic: Reduce flight plan mileage and associated fuel			MET	
uplift/ burn (Priority C)				
The proposed route is shorter than the equivalent flightplannable route within UK	airspace, and can	therefore enable	a fuel saving (cost	
saving) depending on oceanic exit point location.				
Design principle 5: Technical: Minimise negative impact on other airspace users		PARTIAL		
(Priority C)				
There would still likely be an impact on MoD operations within this area, such as r	northbound military	y traffic routing C	AT; this would be	
coordinated accordingly.				
Design principle 6: Operational: Full ANSP agreement (Priority B)	NOT MET			
NATS does not agree to this suggestion due to the excessive operational impact	and lack of flexibili	ty.		

39. EGLL-3B

Option Name: EGLL-3B			REJECT		
Description of option: CDR1/3 route status for the unidirectional offload route(s)					
Design principle 1: Operational: Increase in predictable flight planning for		PARTIAL			
operators and ATC (Priority C)					
This concept would provide flightplannable options for aircraft operators, and wo					
The inability to descend means the traffic must join the existing flow further north		GLL-2, increasino	g the likelihood of		
conflictions with existing north-south traffic flows such as EGCC southbound dep					
Design principle 2: Operational: Minimise resources needed to progress the	NOT MET				
proposal (Priority C)					
The sector flow would change from Sector 35 – AC Sector 5 – TC COWLY, to Sec					
This could require significant changes to current sector boundaries and ATC proc	edures, leading to	a much larger A	TCO training		
requirement than option concepts EGLL-1 or EGLL-2.	1	1			
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂			MET		
emissions where possible (Priority B)					
The routes would provide a CO ₂ reduction for relevant EGLL arrivals. They would			limiting mechanism		
which would ensure the flow balance does not exceed the equivalent of today's s	ack swap number:	S.			
Design principle 4: Economic: Reduce flight plan mileage and associated fuel			MET		
uplift/ burn (Priority C)	<u> </u>				
The proposed route is shorter than the equivalent flightplannable route within UK	airspace, and can t	therefore enable	a fuel saving (cost		
saving) depending on oceanic exit point location.	T				
Design principle 5: Technical: Minimise negative impact on other airspace users		PARTIAL			
(Priority C)					
There would still likely be an impact on MoD operations within this area, such as northbound military traffic routing OAT; this would be coordinated accordingly.					
Design principle 6: Operational: Full ANSP agreement (Priority B)	NOT MET				
NATS does not agree to this suggestion due to the excessive operational impact and lack of flexibility.					

40. EGLL-3C Option

Option Name: EGLL-3C			REJECT
Description of option: CDR3 route status for the unidirectional offload route(s)	-		
Design principle 1: Operational: Increase in predictable flight planning for		PARTIAL	
operators and ATC (Priority C)			
This concept would provide predictable flexibility for ATC to be able to offload tra	ffic when required.		•
CDR3 routes are not available for flight planning; they are not predictable for aircr			fuel for alternative
routes than those potentially available should the offload be needed.			
The inability to descend means the traffic must join the existing flow further north	n than EGLL-1 or E0	GLL-2, increasing	the likelihood of
conflictions with existing north-south traffic flows such as EGCC southbound dep	oartures.		
Design principle 2: Operational: Minimise resources needed to progress the	NOT MET		
proposal (Priority C)			
The sector flow would change from Sector 35 - AC Sector 5 - TC COWLY, to Sec	ctor 27/32 before T	C COWLY.	
This could require significant changes to current sector boundaries and ATC production			TCO training
requirement than option concepts EGLL-1 or EGLL-2.			
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂			MET
emissions where possible (Priority B)			
The routes would provide a CO ₂ reduction for relevant EGLL arrivals. They would			limiting mechanism
which would ensure the flow balance does not exceed the equivalent of today's s	tack swap number	S.	
Design principle 4: Economic: Reduce flight plan mileage and associated fuel		PARTIAL	
uplift/ burn (Priority C)			
This would not reduce flightplan mileage due to the tactical nature. However, act	ual fuel burn may b	e reduced (cost	benefit).
Design principle 5: Technical: Minimise negative impact on other airspace users		PARTIAL	
(Priority C)			
There would still likely be an impact on MoD operations within this area, such as	northbound military	traffic routing (DAT; this would be
coordinated accordingly.			
Design principle 6: Operational: Full ANSP agreement (Priority B)	NOT MET		
NATS does not agree to this suggestion due to the excessive operational impact	and lack of flexibility	ty.	•

ATS Routes

SAIP AD5 is proposing to improve a number of ATS routes within the sectors specific to this proposal by shortening the flightplan track mileage. Some of the proposed changes formalise today's common tactical behaviour, known as a tactical-direct. Some mimic trajectories expected to be seen in Free Route Airspace, and others remove unnecessary restrictions on existing routes.

The design options for the ATS route segments are being considered as either "do-nothing" or "implement some or all of the proposed routes".

This is due to the potential permutations of components under consideration, requiring a disproportionate combination of analyses should each be considered individually against all others and a baseline do-nothing. We contend that this is reasonable at this stage, as it avoids unnecessary duplication of table 42 below (which would be the same for each ATS route component).

All ATS Routes are as described in the Stage 2 Step 2A(i) Airspace Design Options document.

41. Do not implement ATS Routes (do nothing)

Option Name: Do not implement ATS Routes			REJECT
Design principle 1: Operational: Increase in predictable flight planning for operators and ATC (Priority C)	NOT MET		
No improvement from today's operation, no additional flexibility.			
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)		PARTIAL	
No resources required.			
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂ emissions where possible (Priority B)		PARTIAL	
No change to existing arrangements,			
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)		PARTIAL	
No change to existing arrangements.			
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)		PARTIAL	
No change to existing arrangements.			
Design principle 6: Operational: Full ANSP agreement (Priority B)		PARTIAL	
No change to existing arrangements.		-	

42. Implement some or all of the proposed ATS Routes

Option Name: Implement ATS Routes	ACCEPT and PROGRESS			
Description of option: This project is proposing to introduce a number of high-level airline operators.	ATS routes in order	to enable fuel and CO ₂ savings for		
Design principle 1: Operational: Increase in predictable flight planning for operators and ATC (Priority C)		MET		
Greater flightplanning flexibility, flightplans get closer to typical actual flown track	KS.			
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)		MET		
No new resources, minimal additional training required (if combined with other S	AIP AD5 training).			
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂ emissions where possible (Priority B)		MET		
All of the proposed ATS Route changes are above FL195 and would not cause a change to low level tracks. They would deliver a fuel saving for airline operators, reducing CO ₂ emissions.				
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)		MET		
These proposed ATS Routes would allow shorter flightplan routes for aircraft and	d deliver a fuel uplif	saving (cost benefit).		
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)		MÈT		
There are no expected impacts on GA users. Potential interactions between civil	and military traffic	would be coordinated and managed.		
Design principle 6: Operational: Full ANSP agreement (Priority B)		MET		
No particular impact on other ANSPs. MoD interactions would be coordinated and managed.				

TRA 002 Design Concept

TRA 002 is a Class C, Temporary Reserved Area of CAS between FL195-FL245 weekday daytimes. It is positioned close to where the aforementioned EGBB arrival and departure routes have been proposed; particularly its northwest corner which only gets rarely used by the military.

SAIP AD5 is proposing to introduce new routes linking EGBB traffic with the wider route network in the vicinity of this NW corner. To avoid that corner (vicinity of waypoint LAMAT), the newly-routed EGBB departures would need to either stay below FL195, or exceed FL245, by the time they reach the Bristol area. The design reason is that Birmingham departures could climb more continuously in the region, either SW-bound across the corner, or S-bound improving the likelihood of exceeding FL245 before crossing the TRA's revised boundary – for more details see the Stage 2 Step 2A(i) Design Options document.

The MoD, via DAATM, has formally agreed for NATS to progress this on their behalf as part of this proposal. The design options for the TRA 002 design concept are being considered as either "do-nothing to the TRA, considering the new Birmingham flows" or "implement the corner-cut, considering the new Birmingham flows". This is due to the potential permutations of network components under consideration, requiring a disproportionate combination of analyses should each be considered individually with each other. We contend that this is reasonable at this stage.

43. Do not implement TRA 002 concept (do nothing), considering new EGBB flows

Option Name: Do not implement TRA 002 corner-cut concept	REJECT
Design principle 1: Operational: Increase in predictable flight planning for operators and ATC (Priority C)	PARTIAL
No improvement from today's operation.	
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)	PARTIAL
No additional resources required.	
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂ emissions where possible (Priority B)	PARTIAL
No change to existing arrangements,	
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)	PARTIAL
No change to existing arrangements.	
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)	PARTIAL
No change to existing arrangements.	
Design principle 6: Operational: Full ANSP agreement (Priority B)	PARTIAL
No change to existing arrangements.	

44. Implement TRA 002 concept, considering new EGBB flows

Option Name Implement TRA 002 corner-cut concept	ACCEPT and PROGRESS
Design principle 1: Operational: Increase in predictable flight planning for operators and ATC (Priority C)	MET
ATC tactical flexibility would increase	
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)	MET
Some MoD training may be required; however this could be part of the MoD's wic training burden.	ider SAIP AD5 training requirement, thus minimal additional
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂ emissions where possible (Priority B)	MET
No change to low level traffic. Would enable more continuous climbs which can	n reduce fuel burn and CO ₂ emissions.
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)	MET
Would enable more continuous climbs which can reduce fuel burn, saving operat	ators money.
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)	MET
Has potential to impact MoD operations, however the MoD agree that this is not a	t a significant issue.
Design principle 6: Operational: Full ANSP agreement (Priority B)	MET
MoD agree. No impact on other ANSPs.	

Design Components – summary of progression

Reference	Description	Summary of progression
EGBB-1B	CAS volumes to be Class C	Class C is an appropriate classification.
EGBB-1C	CAS volumes to be Class D	Class D is an appropriate classification.
EGBB-1F	Routes/ CAS to be established 7 days a week (evenings/ overnights/ mornings)	These FUA timings are appropriate
EGBB-1G	Routes/ CAS to be established 5 days a week (evenings/ overnights/ mornings), H24 at weekends	These FUA timings are appropriate
EGBB-2B	CAS volumes to be Class C	Class C is an appropriate classification.
EGBB-2C	CAS volumes to be Class D	Class D is an appropriate classification.
EGBB-2F	Routes/ CAS to be established 7 days a week (evenings/ overnights/ mornings)	These FUA timings are appropriate
EGBB-2G	Routes/ CAS to be established 5 days a week (evenings/ overnights/ mornings), H24 at weekends	These FUA timings are appropriate
EGLL-1B	Two separate blocks of CAS for EGLL arrivals, volumes to be Class C	Class C is an appropriate classification.
EGLL-1F	Two separate blocks of CAS for EGLL arrivals, CDR1/3 route status	CDR1/3 is an appropriate category
EGLL-1G	Two separate blocks of CAS for EGLL arrivals, CDR3 route status	CDR3 is an appropriate category
EGLL-2B	One block of CAS for EGLL arrivals, volumes to be Class C	Class C is an appropriate classification.
EGLL-2F	One block of CAS for EGLL arrivals, CDR1/3 route status	CDR1/3 is an appropriate category
EGLL-2G	One block of CAS for EGLL arrivals, CDR3 route status	CDR3 is an appropriate category
ATS routes	All, or some, of the proposed high level routes	These routes would provide predictable fuel savings
TRA 002	Revision of NW corner	This revision would provide improved ATC flexibility for EGBB departures

The point of these design components is to explore each scenario in isolation. We can now take the best scoring parts of each component and consider them as follows:

Class C and Class D are both suitable classifications for the proposed CAS. We will consider an appropriate mix of these two classifications, based on the characteristics of each specific CAS volume, in the combined design option concepts.

FUA, CDR3, CDR1/3 are suitable mechanisms to be considered re times and conditions of activation of the proposed EGBB/EGLL routes/CAS. We will consider the possible on/off permutations vs the simplicity of a single combined activation, in the combined design option concepts.

The higher level ATS routes will be considered in the combined design option concepts. The TRA 002 boundary revision will be considered in the combined design option concepts.

Final Combined Design Option Concepts

As described in the Stage 2 Step 2A(i) Design Options document, the longlist of components has been evaluated against the design principles and a logical shortlist of components has emerged – those components designated "Accept and Progress".

These shortlisted components have been combined into two system-wide design concepts; each of which has two sub-options based on time of availability. These combined options take into consideration extensive engagement with, and feedback from, civilian ATC, military ATC, GA experts, airline and airport representatives, development simulations and the design principle evaluation of the components earlier in this document.

Combined designs which support airspace sharing, CAS classifications considered in relation to the location and base level of each specific volume, and the ability to activate/ deactivate under FUA have therefore been prioritised.

For draft charts and more detail please see Step 2A(ii) Design Options document.

45. Combined Concept 1A

- 45.1 This design concept contains a larger Class D CAS volume near EGBB.
- The airspace would be available evenings, overnights and mornings, 7 days a week, with appropriate clawback arrangements or consideration of planned special events.
- 45.3 This design concept takes elements from EGBB-1B, EGBB-1C, EGBB-1F, EGLL-1B, EGLL-1F, EGLL-1G, ATS Routes and TRA 002.

Option Name: Combined Concept 1A		ACCEPT	and PROGRESS	
Design principle 1: Operational: Increase in predictable flight planning for operators and ATC (Priority C)			MET	
There would be predictable route availability for EGBB routes and flexibility for EG	LL arrivals.			
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)			MET	
Development simulations indicate this is both manageable and achievable with a	n acceptable resou	irce effort.		
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂ emissions where possible (Priority B)		PARTIAL		
The routes would provide a CO ₂ reduction for relevant traffic, which would not change below 7,000ft. A new FL65 CAS base may cause some GA flights to reroute or fly lower than they do today.				
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)		PARTIAL		
This option would allow a reduction in flightplan mileage and fuel uplift/burn but r	not as much as Coi	ncept 1B		
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)		PARTIAL		
The use of different airspace classifications for different volumes takes better account of the needs of other airspace users when compared with the blanket classifications considered at the design component evaluation. The larger Class D volume near EGBB potentially has a greater impact on GA and MoD operations compared with Concept 2. The deactivation of the structures during core daytime hours minimises the impact on MoD and GA.				
Design principle 6: Operational: Full ANSP agreement (Priority B)			MET	
This option would be acceptable for the ANSPs and provides a simpler airspace structure than Concept 2.				

46. Combined Concept 1B

- 46.1 This design concept contains a larger Class D CAS volume near EGBB.
- The airspace is established evenings, overnights and mornings on weekdays, and H24 at weekends, with appropriate clawback arrangements or consideration of planned special events.
- 46.3 This design concept takes elements from EGBB-1B, EGBB-1C, EGBB-1G, EGLL-1B, EGLL-1F, EGLL-1G, ATS Routes and TRA 002.

Option Name: Combined Concept 1B		ACCEPT and PROGRESS				
Design principle 1: Operational: Increase in predictable flight planning for operators and ATC (Priority C)			MET			
There would be predictable route availability for EGBB routes and flexibility for EGLL arrivals.						
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)			MET			
Development simulations indicate this is both manageable and achievable with an acceptable resource effort.						
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂ emissions where possible (Priority B)		PARTIAL				
The routes would provide a CO ₂ reduction for relevant traffic, which would not change below 7,000ft. A new FL65 CAS base may cause some GA flights to reroute or fly lower than they do today.						
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)			MET			
This option would allow a reduction in flightplan mileage and fuel uplift/burn, mor	e than Concept 1A.					
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)		PARTIAL				
The use of different airspace classifications for different volumes takes better account of the needs of other airspace users when compared with the blanket classifications considered at the design component evaluation.						
The larger Class D volume near EGBB potentially has a greater impact on GA and MoD operations compared with Concept 2. The deactivation of the structures during core weekday daytime hours minimises the impact on MoD, however it is recognised that there could be specific GA impacts at weekends which may need further mitigation.						
Design principle 6: Operational: Full ANSP agreement (Priority B)			MET			
This option would be acceptable for both ANSPs and provides a simpler airspace structure than Concept 2, however the times would be preferable for both ANSPs as it matches existing ATSOCAS availability (described in para 4.1.2 of Step 2A(i)).						

47. Combined Concept 2A

- 47.1 This design contains a smaller Class D CAS volume near EGBB.
- 47.2 The airspace would be available evenings, overnights and mornings, 7 days a week, with appropriate clawback arrangements or consideration of planned special events.
- 47.3 This design concept takes elements from EGBB-2B, EGBB-2C, EGBB-2F, EGLL-1B, EGLL-1F, EGLL-1G, ATS Routes and TRA 002.

Option Name: Combined Concept 2A		ACCEPT and PROGRESS				
Design principle 1: Operational: Increase in predictable flight planning for operators and ATC (Priority C)			MET			
There would be predictable route availability for EGBB routes and flexibility for EGLL arrivals.						
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)			MET			
Development simulations indicate this is both manageable and achievable with an acceptable resource effort.						
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂ emissions where possible (Priority B)		PARTIAL				
The routes would provide a CO ₂ reduction for relevant traffic, which would not change below 7,000ft. A new FL65 CAS base may cause some GA flights to reroute or fly lower than they do today.						
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)		PARTIAL				
This option would allow a reduction in flightplan mileage and fuel uplift/burn but not as much as Concept 2B						
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)		PARTIAL				
The use of different airspace classifications for different volumes takes better account of the needs of other airspace users when compared with the blanket classifications considered at the design component evaluation. The smaller Class D volume near EGBB has a lesser impact on GA and MoD operations compared with Concept 1. The deactivation of the structures during core daytime hours minimises the impact on GA and MoD.						
Design principle 6: Operational: Full ANSP agreement (Priority B)			MET			
This option would be acceptable for both ANSPs and provides a slightly more complex airspace structure than Concept 1.						

48. Combined Concept 2B

- 48.1 This design contains a smaller Class D CAS volume near EGBB.
- 48.2 The airspace is established evenings, overnights and mornings on weekdays, and H24 at weekends, with appropriate clawback arrangements or consideration of planned special events.
- 48.3 This design concept takes elements from EGBB-2B, EGBB-2C, EGBB-2G, EGLL-1B, EGLL-1F, EGLL-1G, ATS Routes and TRA 002.

Option Name: Combined Concept 2B		ACCEPT and PROGRESS				
Design principle 1: Operational: Increase in predictable flight planning for operators and ATC (Priority C)			MET			
There would be predictable route availability for EGBB routes and flexibility for EGLL arrivals.						
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)			MET			
Development simulations indicate this is both manageable and achievable with an acceptable resource effort.						
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂ emissions where possible (Priority B)		PARTIAL				
The routes would provide a CO ₂ reduction for relevant traffic, which would not change below 7,000ft. A new FL65 CAS base may cause some GA flights to reroute or fly lower than they do today.						
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)			MET			
This option would allow a reduction in flightplan mileage and fuel uplift/burn, more than Concept 2A.						
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)		PARTIAL				
The use of different airspace classifications for different volumes takes better account of the needs of other airspace users when compared with the blanket classifications considered at the design component evaluation. The larger Class D volume near EGBB potentially has a lesser impact on GA and MoD operations compared with Concept 1. The deactivation of the structures during core weekday daytime hours minimises the impact on MoD, however it is recognised that there could be specific GA impacts at weekends which may need further mitigation.						
Design principle 6: Operational: Full ANSP agreement (Priority B)			MET			
This option would be acceptable for both ANSPs even though it provides a slightly however the times would be preferable for both ANSPs as it matches existing AT.						

49. Conclusion and Shortlist

- 49.1 The design component options have been evaluated, and the best scoring components have been combined into system concepts which have also been evaluated.
- 49.2 We conclude that the Combined Concepts 1A, 1B, 2A and 2B best meet the design principles and their relative priorities.
- 49.3 The shortlist therefore comprises the baseline do-nothing option, and these four combined concepts.

50. Next Steps

50.1 These four options will be formally appraised under Stage 2 Step 2B Options Appraisal (Phase 1 Initial) including Safety Assessment.

End of document