

Proposed changes to

Swanwick Airspace Improvement Programme Airspace Deployment 6, (SAIP AD6) ACP-2018-65

London Luton Airport Arrivals

SAIP AD6 Supplement:

Stansted Airport SID climb performance evidence supporting technical changes to altitude restrictions enabling the raising of CAS base levels

© 2021 NATS (En-route) plc ('NERL') and London Luton Airport Operations Ltd ('LLA'), all rights reserved

NATS-LLA Public

Roles

Action	Role	Date	
Produced	Airspace Change Expert	25/10/2021	
rroddoca	NATS Airspace and Future Operations	20, 10, 2021	
Reviewed	Airspace and Noise Performance Manager	25/10/2021	
Approved	London Luton Airport	20, 10, 2021	
Reviewed	Airspace Implementation Manager	25/10/2021	
Approved	NATS Airspace Development	20, 10, 2021	

Drafting and Publication History

Issue	Month/Year	Changes this issue
Issue 1.0	25/10/2021	Published to CAA Portal
Issue 1.1	05/11/2021	Updated following CAA clarification requests Published to CAA Portal

Contents

1.	Introduction - SAIP AD6 Controlled Airspace Southeast of Stansted	3
2.	Controlled Airspace Containment Circumstances	4
3.	Illustration and explanation of the post-ACP Stansted SID profile analysis	5
4.	Evidence of exceeding of climb gradients	6
5.	Noise, Local Air Quality, Fuel, Greenhouse Gas and Controller Workload Impacts	16
6.	Proposed Solution: SID altitude restriction amendments	16
7.	Engagement Summary and Additional Evidence	18
8.	Overall Conclusion – and what happens next	18
9.	ANNEX: Draft charts and coding tables (the following 12 pages)	19
10.	ANNEX: Engagement Emails (Redacted)	32

1. Introduction – SAIP AD6 Controlled Airspace Southeast of Stansted

- 1.1 The SAIP AD6 Airspace Change Proposal (ACP) consulted on the reduction of low-altitude controlled airspace (CAS) to the southeast of Stansted, for the benefit of other airspace users known as General Aviation (GA), given that the ACP requires additional CAS albeit at much higher flight levels.
- 1.2 The release of CAS was agreed with Stansted Airport, and we confirmed that there would be no impact on aircraft flying the standard instrument departure (SID) routes through these volumes.
- 1.3 The ACP was formally submitted with the following proposed technical amendments to CAS:
 - 1.3.1 Stansted CTA3, raise CAS base by 500ft to 2500ft, to the same altitude as the southern-adjacent CAS volume known as LTMA1.
 - 1.3.2 Delete the triangular volume known as LTMA2, SE of Stansted.
 - 1.3.3 LTMA3, expand to infill the 'gap' left by the removal of LTMA2, making a single CAS base of 3500ft with no unnecessary lines on aeronautical charts.

Figure 1 Controlled Airspace (CAS) arrangements SE of Stansted: Current and Proposed

2. Controlled Airspace Containment Circumstances

- 2.1 In mid/late August 2021, several weeks after the submission of the ACP and supporting documentation, we became aware that the SIDs routeing through these volumes had altitude restrictions that may not comply with the CAA's Controlled Airspace Containment Policy 2014.
- 2.2 This non-compliance would manifest should the CAS volumes be reduced as per the ACP. It may be theoretically possible that aircraft using the SIDs climb at the minimum rate defined on the current charts.
- 2.3 We already know that Stansted departures outclimb the existing altitude restrictions (hence the proposal to return the CAS volumes), but the purpose of this document is to transparently explain and demonstrate how Stansted departures on these SIDs climb, meet or exceed the existing altitude restrictions, identify technical solutions and compare existing climb performance with proposed solutions.
- 2.4 This will provide a solution to neutralise the CAS containment compliance issue. A CAS containment study for the Stansted SIDs was omitted from the originally submitted ACP, for which we apologise.
- 2.5 We initially conducted a radar track analysis of Stansted departures for August 2019 (one of the hottest months of the decade and Stansted's busiest month of the year) and provisionally concluded that a technical change to the SID altitude restrictions would have no material impact to Stansted departures using those SIDs.
- 2.6 We briefed the CAA on this provisional conclusion in late September 2021, and arranged a meeting to discuss the implications. Subsequently in early October the CAA requested additional evidence to support the provisional conclusion, along with additional flight-procedure compliance information.
- 2.7 This supplementary document will illustrate the circumstances, the evidence, and the proposed solutions. Due to limitations within the radar track analysis tool, we present the majority of the results numerically in this document. The radar track images for August are presented along with the numerical data, to illustrate the general situation. However, note that the radar images provided represent only c.25% of the wider data analysed (01 June to 30 September 2019, 121 days).

Page 4

3. Illustration and explanation of the post-ACP Stansted SID profile analysis

This applies to CAS containment for the following eight Stansted SIDs as per the chart illustration:

CLN4S, DET1S, (Rwy 04 conventional navigation), DET1D (Rwy 04 RNP1 navigation), LAM2S (Rwy 04 positioning to Heathrow, conventional navigation)

CLN8R, DET1R (Rwy 22 conventional) CLN1E (Rwy 22 RNP1), LAM3R (Rwy 22 positioning to Heathrow, conventional)

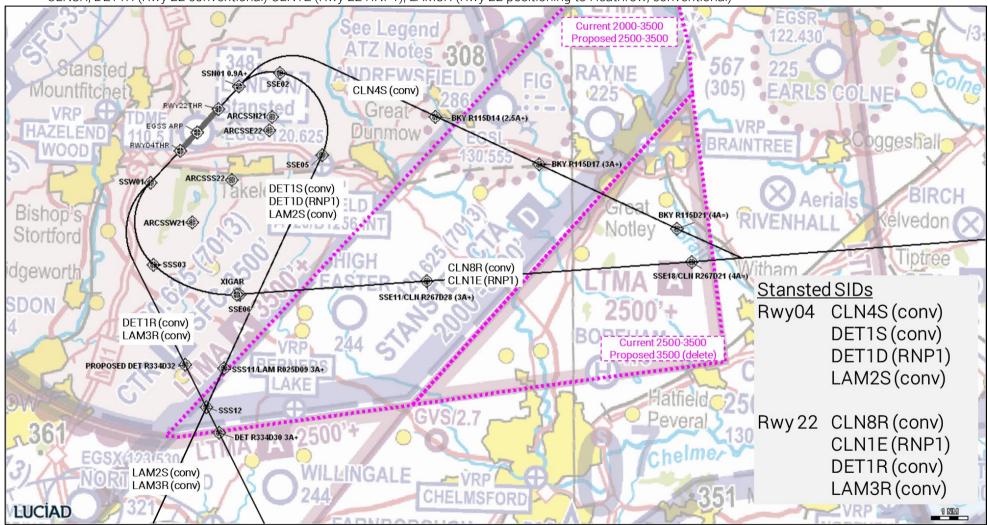


Figure 2 Stansted SID CAS containment (current, and proposed under AD6 if no action taken)

4. Evidence of exceeding of climb gradients

- 4.1 The following altitude analysis is based on NATS' radar tracks of Stansted south and eastbound departures during the 121 days from 01 June-30 Sept 2019.

 Radar track plots are also provided for all 31 days of August 2019 as a pictorial representation of the general situation, but they do not show the complete analysis. Note that the word 'days' in this document means a 24 hour period immediately followed by the next 24 hour period.
- 4.2 Summer 2019 was, at the time, the twelfth hottest summer in the UK since 1910, and the August bank holiday weekend temperature record was broken in south-eastern England (Heathrow, 33.2°C) (<u>source</u> and <u>source</u>). August was also Stansted Airport's busiest month for air traffic movements that summer (Jun 14,062 ATM, Jul 14.399 ATM, Aug 14,459 ATM, Sep 13,820 ATM) (<u>source</u>). Thus the data is representative of 'worst case', i.e. busiest traffic, likely heaviest load factors, lower air density causing reduced aircraft engine performance and aerodynamic surface performance.
- 4.3 CLN SIDs are far more commonly used than DET SIDs due to usage restrictions following the LAMP 1A airspace change in 2016.

 LAM SIDs are very rarely used; only used for positioning aircraft from Stansted to Heathrow, and they follow the same or similar initial tracks as the DET SIDs.
- 4.4 From page 8 we provide an analysis of departure flows (aircraft altitudes as they fly through the gates shown in Figure 3 below), illustrated by the blue 'whiskers' of August 2019. Where a blue track ends, it has exceeded FL70 in the images, however all flights at all altitudes are counted in the numerical analysis.

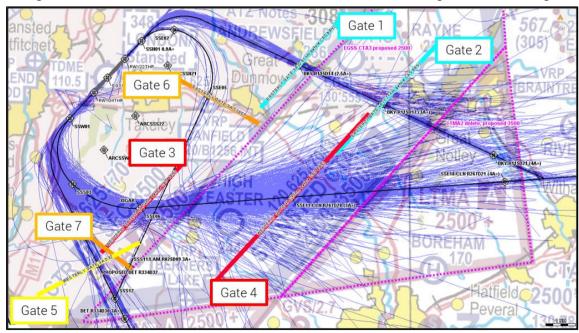


Figure 3 Analysis Gates

The data presented in this section is a 'snapshot' of data points through the gates that have been analysed. In that analysis we have assumed that data points within 200ft of the gate altitude are considered as having met that altitude.

In Figure 4 below, we provide extracts from the UK's central repository of flight procedure data, known as the AIP. This gives the reader context for the subsequent analysis.

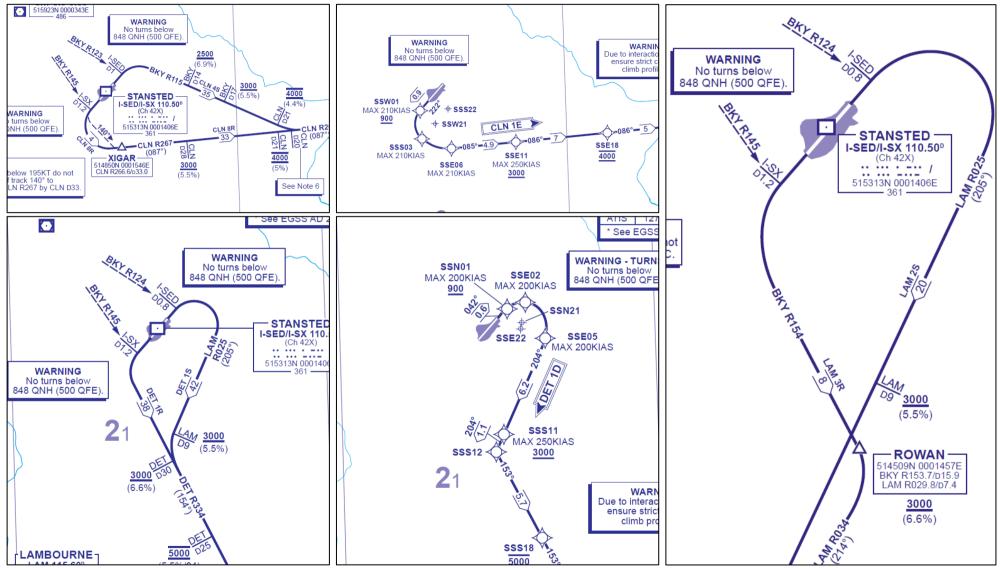
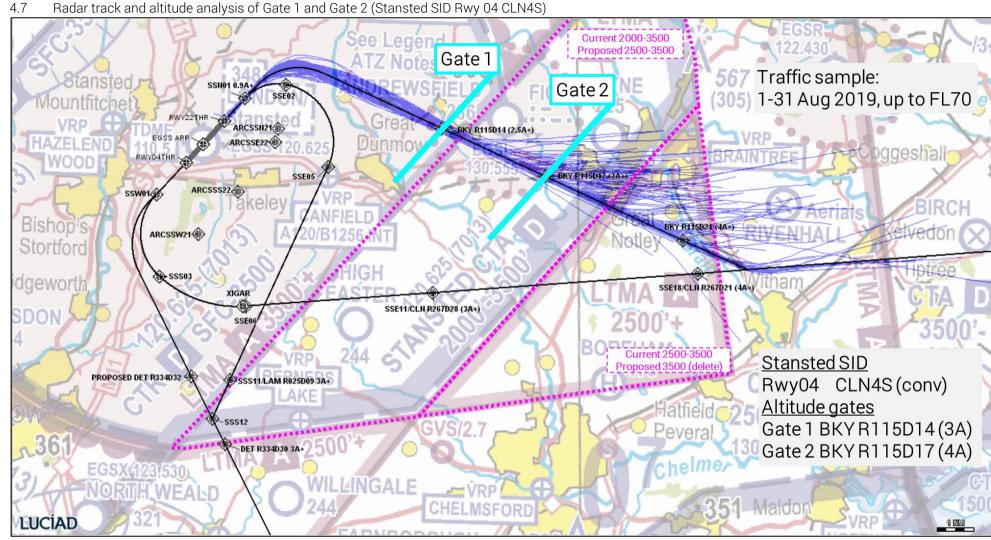



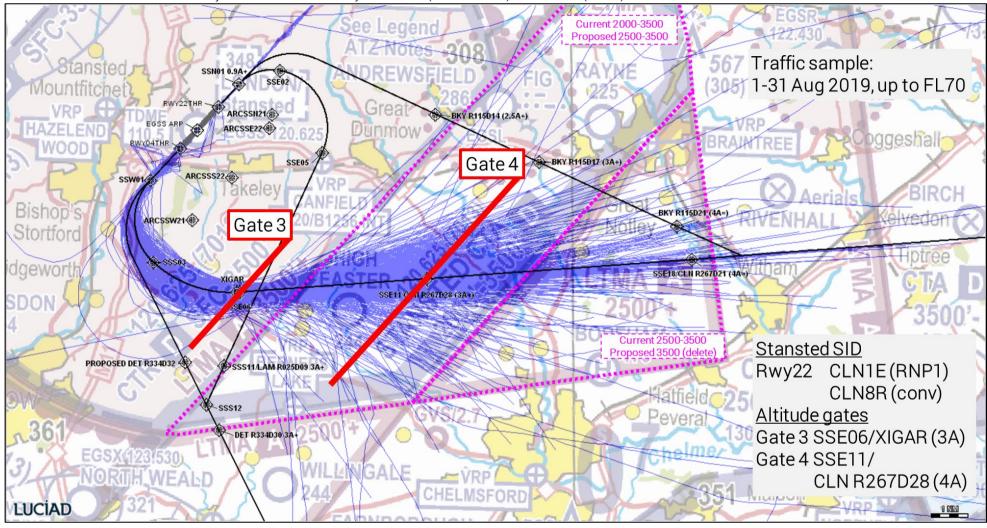
Figure 4 Stansted SIDs: extracts from AIP (AIRAC10-21) clockwise from top left: CLN4S/CLN8R, CLN1E, LAM2S/LAM3R, DET1D, DET1S/DET1R

Issue 1.1

Figure 5 Stansted SID Rwy 04 CLN4S (conventional) - August 2019 illustration

Narrative: Stansted SID Rwy 04 CLN4S (conventional) – data sample from 1 Jun-30 Sep 2019 (121 days)

- 4.7.1 **Analysis Gate 1** was placed at BKY R115D14, designed to analyse aircraft at 3,000ft. One item of radar data was considered bad, indicating 0ft, and was excluded from subsequent analysis.
- 4.7.2 Of the remaining 4,803 departures, 4,801 (99.96%) met or exceeded an altitude of 3,000ft through the gate, which is 0.5nm before the next relevant CAS boundary (measured along the nominal track). Two (0.04%) were within 200ft¹, and in this case both were actually within 100ft of Gate 1.
- 4.7.3 **Analysis Gate 2** was placed at BKY R115D17, designed to analyse aircraft at 4,000ft. One item of radar data was considered bad, indicating 0ft, and was excluded from subsequent analysis.
- 4.7.4 Of the remaining 5,658 departures, 5,636 (99.61%) met or exceeded an altitude of 4,000ft through the gate, which is 1.8nm before the next relevant CAS boundary (measured along the nominal track). Twenty (0.35%) were within 200ft, and in this case 17 were actually within 100ft of Gate 2.
- 4.7.5 Of the remaining two flights through Gate 2:
 - An A320 to Vienna achieving 3,500ft was compared with another A320 to Paphos on the same day, with Paphos 1,000nm further away from Stansted than Vienna (needing several tonnes of aviation fuel more than a flight to Vienna). The Paphos flight achieved 4,900ft.
 - An A20N to Istanbul achieving 3,600ft was compared with another A20N of the same operator, to the same destination on the same day. The latter flight achieved 5,000ft.


Conclusion: Stansted SID Rwy 04 CLN4S (conventional)

- 4.7.6 Two flights in 121 days (0.04%) did not quite meet or exceed the Gate 2 analysis altitudes.
- 4.7.7 Of those 2 flights, the Gate 2 analysis altitudes were met or exceeded by similar flights.
- 4.7.8 CAS containment assurance would be established, should climb restrictions be placed at the same locations as these gates.

¹ Analysis assumption: data points within 200ft are considered as having met the Gate altitude. See paragraph 4.5 on p.6.

4.8 Radar track and altitude analysis of Stansted SID Rwy 22 CLN8R (conventional) and CLN1E (RNP1)

Issue 1.1

Figure 6 Stansted SID Rwy 22 CLN8R (conventional) and CLN1E (RNP1) – August 2019 illustration

Narrative: Stansted SID Rwy 22 CLN8R (conventional) and CLN1E (RNP1) – data sample from 1 Jun-30 Sep 2019 (121 days)

- 4.8.1 **Analysis Gate 3** was placed at SSE06/XIGAR, designed to analyse aircraft at 3,000ft.

 Three items of radar data were considered bad, one indicating 0ft, two were flights unintentionally captured by the gate but were not using the SIDs of interest, and all three were excluded from subsequent analysis.
- 4.8.2 Of the remaining 13,770 departures, 13,733 (99.73%) met or exceeded an altitude of 3,000ft through the gate, which is 1.6nm before the next relevant CAS boundary (measured along the nominal track). Thirty one (0.23%) were within 200ft, and in this case 25 were actually within 100ft of Gate 3.
- 4.8.3 Six flights (0.04%) met or exceeded 2,700ft through the gate. Each of the 6 were identified and compared with similar flights.

• An A320 to Larnaca achieving 2,700ft was compared with another A320 to Antalya, a similar distance. The Antalya flight achieved 3,500ft.

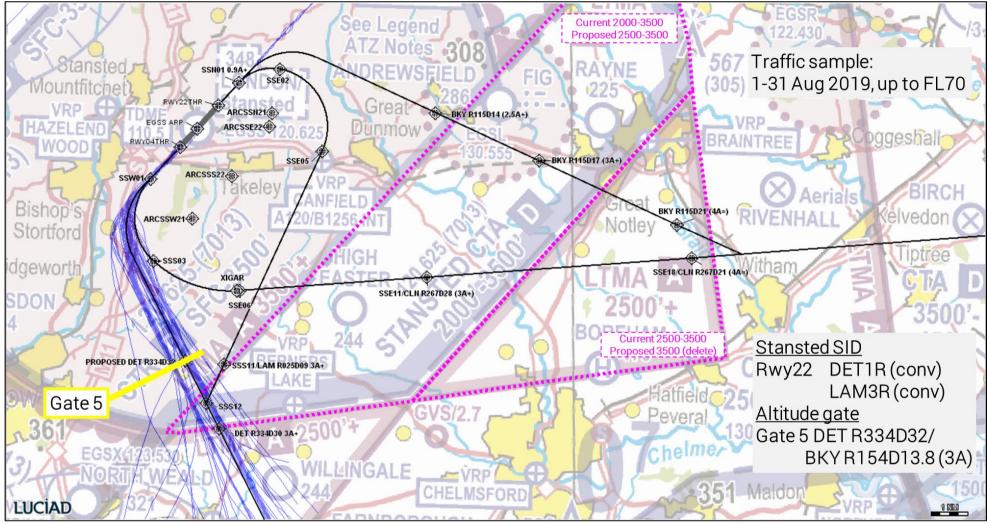
An A321 to Paphos achieving 2,700ft was compared with another A321 to Antalya, a similar distance.
 The Antalya flight achieved 3,500ft.

• A B738 to Rhodes achieving 2,700ft was compared with another B738 to Bodrum, a similar distance. The Bodrum flight achieved 3,100ft.

• An A321 to Rhodes achieving 2,700ft was compared with another A321 to Dalaman, a similar distance. The Dalaman flight achieved 3,200ft.

• A B738 to Dalaman achieving 2,700ft was compared with another B738 to the same destination. The latter flight achieved 4,100ft.

- For one flight achieving 2,700ft there was no comparable flight on the same day a B748 cargo aircraft to Luxembourg.


 However, the same operator's flight using the same aircraft to the same destination achieved 3,300ft, 3,800ft and 2,900ft in the three preceding flights, and then achieved 3,700ft, 3,200ft and 3,900ft in the three subsequent flights.
- 4.8.4 **Analysis Gate 4** was placed at SSE11/CLN R267D28, designed to analyse aircraft at 4,000ft. One item of radar data was considered bad, indicating 0ft, and was excluded from subsequent analysis.
- 4.8.5 Of the remaining 13,668 departures, 13,627 (99.7%) met or exceeded an altitude of 4,000ft through the gate, which is 2.8nm before the next relevant CAS boundary (measured along the nominal track). Forty one (0.3%) were within 200ft, and in this case 40 were actually within 100ft of Gate 4.

Conclusion: Stansted SID Rwy 22 CLN8R (conventional) and CLN1E (RNP1)

- 4.8.6 Six flights in 121 days (0.04%) did not guite meet or exceed the Gate 3 analysis altitudes.
- 4.8.7 Of those 6 flights, the Gate 3 analysis altitudes were met or exceeded by similar flights.
- 4.8.8 CAS containment assurance would be established, should climb restrictions be placed at the same locations as these gates.

4.9 Radar track and altitude analysis of Stansted SID Rwy 22 DET1R and LAM3R (conventional).

Issue 1.1

Figure 7 Stansted SID Rwy 22 DET1R and LAM3R (conventional) - August 2019 illustration

Narrative: Stansted SID Rwy 22 DET1R and LAM3R (conventional) – data sample from 1 Jun-30 Sep 2019 (121 days)

The DET SIDs are less frequently used, following the LAMP1A ACP from 2016 which transferred the majority of traffic to the CLN SIDs (analysed earlier), and the LAM SIDs are for positioning aircraft to Heathrow. Both would follow a similar track through Gate 5.

- 4.9.1 Analysis Gate 5 was placed at DET R334D32/BKY R154D13.8, designed to analyse aircraft at 3,000ft.
- 4.9.2 There were 556 departures, all but one of which met or exceeded an altitude of 3,000ft through the gate, which is 1.0nm before the relevant CAS boundary (measured along the nominal track).
- 4.9.3 The remaining flight was actually within 100ft of Gate 5 and is considered to have 'achieved' the gate.

Conclusion: Stansted SID Rwy 22 DET1R and LAM3R (conventional)

- 4.9.4 All flights using these SIDs in 121 days met or exceeded the Gate 5 analysis altitudes.
- 4.9.5 CAS containment assurance would be established, should climb restrictions be placed at the same location as this gate.

4.10 Radar track and altitude analysis of Stansted SID Rwy 04 DET1S LAM 2S (conventional) and DET1D (RNP1).

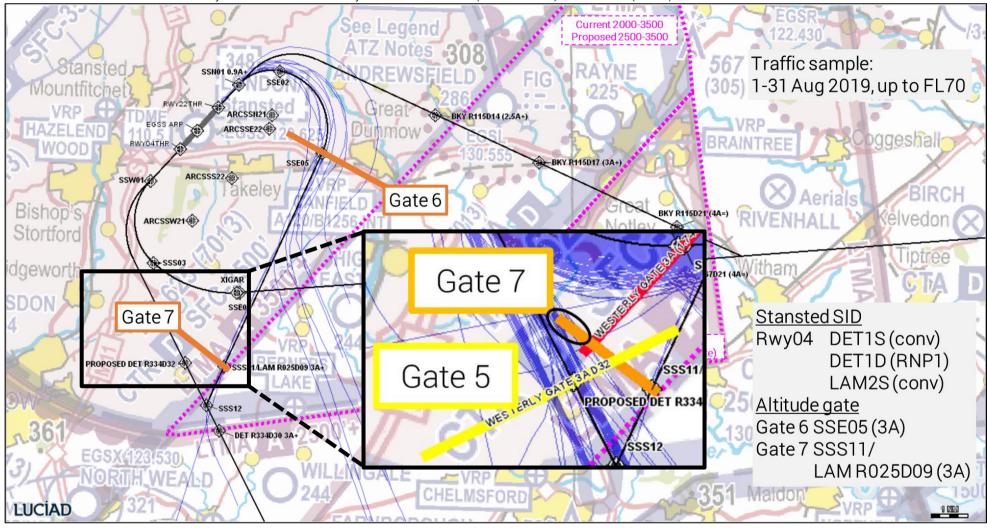


Figure 8 Stansted SID Rwy 04 DET1S LAM 2S (conventional) and DET1D (RNP1) - August 2019 illustration, with Gate 5 and Gate 7 crossover highlighted

Issue 1.1

Narrative: Stansted SID Rwy 04 DET1S LAM 2S (conventional) and DET1D (RNP1) – data sample from 1 Jun-30 Sep 2019 (121 days)

The DET SIDs are less frequently used, following the LAMP1A ACP from 2016 which transferred the majority of traffic to the CLN SIDs (analysed earlier), and the LAM SIDs are only for positioning flights. Both would follow a similar track through Gate 6, with the LAM2S always continuing through Gate 7 towards LAM.

In the August illustration above, note that several DET-bound aircraft appear to have been turned directly to DET while still abeam the runway, thus avoiding Gate 7. A turn such as this is only allowable once the aircraft has attained an altitude of 4,000ft in accordance with EGSS-AD-2.21 Noise Abatement Procedures, assuring CAS containment for the areas of interest. This is a common controlling technique which complies with the Noise Abatement procedures and shortens the track to DET.

- 4.10.1 **Analysis Gate 6** was placed at SSE05, designed to analyse aircraft at 3,000ft.

 One item of radar data was considered bad, indicating 0ft, and was excluded from subsequent analysis.
- 4.10.2 Of the remaining 206 departures, all met or exceeded an altitude of 3,000ft through the gate, with 193 (93.6%) achieving or exceeding 3,500ft.
- 4.10.3 Analysis Gate 7 was placed at SSS11/LAM R025D09, designed to analyse aircraft at 3,500ft that departed Rwy 04 via these SIDs.
- 4.10.4 Gate 7 'crosses' the Rwy 22 DET/LAM track, as per Gate 5 described previously. This means that several Rwy 22 flights are unintentionally captured by this gate, and more flights are counted through Gate 7 than Gate 6 which is counter-intuitive. This is highlighted in Figure 8 above. We inferred that those with a snapshot heading of between 150°-170° belong in Gate 5 for the Rwy 22 departures previously analysed, and can be removed from Gate 7 where the heading would be c.200-220°.
- 4.10.5 There were 535 flights counted by this Gate, including those unintentionally captured.
- 4.10.6 Logically, all those meeting or exceeding 3,500ft have achieved the analysis altitude, regardless of whether they 'belong' in previous Gate 5 or this Gate 7.
- 4.10.7 One flight achieved 3200ft, three achieved 3,300ft, and one achieved 3,400ft. However, studying the heading of these flights, all five were tracking between 150°-170°, thus they 'belong' in Gate 5 and not in Gate 7 and can be excluded from this Gate 7 analysis.
- 4.10.8 530 flights met or exceeded an altitude of 3,500ft through the gate, regardless of whether they were eligible for Gate 5 or Gate 7.

Conclusion: Stansted SID Rwy 04 DET1S LAM 2S (conventional) and DET1D (RNP1)

- 4.10.9 Gate 6 was set to understand how high aircraft typically achieve at the end of their first turn, and was not intended to set a new climb restriction.
- 4.10.10 Flights not meeting 3,500ft through Gate 7 were relevant to this analysis.

 Those 5 were all identified, their headings analysed, and all 5 'belong' to Gate 5.
- 4.10.11 Flights through Gate 5 that were unintentionally captured by Gate 7 remained included and their headings were not analysed.

 As long as any flight met or exceeded the analysis altitude, no further study was necessary because its purpose was to identify all flights that
 - underperformed the altitude parameter of 3,500ft.
- 4.10.12 All eligible flights in 121 days met or exceeded the analysis altitudes of both gates.
- 4.10.13 CAS containment assurance would be retained, should a climb restriction be placed at the same location as Gate 7.

5. Noise, Local Air Quality, Fuel, Greenhouse Gas and Controller Workload Impacts

- 5.1 Paragraphs 4.7 (p.8) to 4.10 (p.14) show that 99.8% of flights in the 121 day sample (all but eight out of 39,825 flights) were within 200ft of the proposed altitude restrictions.
- 5.2 The remaining eight (0.2%, or four orders of magnitude fewer) slightly underperformed by 1-300 feet.
- 5.3 It is possible that one, some, or all eight would have made the Gate altitude without changing thrust settings by trading airspeed for height gain (a common technique) before the Gate location, but we cannot state this for certain. There may also have been flight deck or ATC reasons.
- 5.4 We have demonstrated that 8 closely-equivalent flights to those underperformers either met or exceeded the proposed altitude restrictions. However, an overwhelming number (by four orders of magnitude) of similar flights met or exceeded the Gate altitudes compared to those slightly underperforming, which are considered outlier anomalies.
- In a theoretical worst-case scenario, all eight of the outliers in the c.40,000 sample may have needed to slightly, temporarily, increase climb rate power to acquire 1-300ft of altitude. In this unlikely scenario, there would still be no impact on the CAP1616 primary noise metrics due to the minuscule proportion of anomalous flights, and the small amount of additional power needed to gain 1-300ft given that the overwhelming majority of comparable flights meet or exceed the Gate altitude.
- Therefore, we cannot guarantee that there would be no changes to thrust settings due to this proposal. However, the evidence we have supplied strongly suggests that this would apply only to rare outliers in minuscule proportions (0.2%). Environmental impacts may occur due to thrust settings, but they would be neither discernible nor measurable.
- 5.7 The proposed changes would cause no air traffic controller workload impacts.

6. Proposed Solution: SID altitude restriction amendments

We propose to amend the vertical definitions, but not the lateral definitions, of the following 8 SIDs:

- 6.1 Rwy 04 CLN4S (conventional)
 - 6.1.1 Change altitude restriction at BKY R115D14 from 2500ft to 3000ft.
 - 6.1.2 Change altitude restriction at BKY R115D17 from 3000ft to 4000ft.
 - 6.1.3 Up-issue the SID chart to CLN5S (see Figure 10 on p.21).
 - 6.1.4 As per the evidence supplied in paragraph 4.7 from p.8, aircraft already meet or exceed these proposed restrictions.
- 6.2 Rwy 22 CLN8R (conventional)
 - 6.2.1 Add an altitude restriction at XIGAR 3000ft.
 - 6.2.2 Change altitude restriction at CLN R267D28 from 3000ft to 4000ft.
 - 6.2.3 Up-issue the SID chart to CLN9R (see Figure 10 on p.21).
 - 6.2.4 As per the evidence supplied in paragraph 4.8 from p.10, aircraft already meet or exceed these proposed restrictions.
- 6.3 Rwy 22 CLN1E (RNP1)
 - 6.3.1 Add an altitude restriction at SSE06 3000ft.
 - 6.3.2 Change altitude restriction at SSE11 from 3000ft to 4000ft.
 - 6.3.3 Up-issue the SID chart and coding table to CLN2E (Figure 12 on p.23 and Figure 19 on p.30).
 - 6.3.4 As per the evidence supplied in paragraph 4.8 from p.10, aircraft already meet or exceed these proposed restrictions.

- 6.4 Rwy 04 DET1S (conventional)
 - 6.4.1 Change altitude restriction at LAM R025D09 from 3000ft to 3500ft.
 - 6.4.2 Up-issue the SID chart to DET2S (Figure 14 on p.25).
 - 6.4.3 As per the evidence supplied in paragraph 4.10 from p.14, aircraft already meet or exceed this proposed restriction.
- 6.5 Rwy 04 DET1D (RNP1)
 - 6.5.1 Change altitude restriction at SSS11 from 3000ft to 3500ft.
 - Up-issue the SID chart and coding table to DET2D (Figure 16 on p.27 and Figure 20 on p.31).
 - 6.5.3 As per the evidence supplied in paragraph Figure 7 from p.12, aircraft already meet or exceed this proposed restriction.
- Rwy 22 DET1R (conventional) 6.6
 - 6.6.1 Add an altitude restriction at DET R334D32 3000ft.
 - 6.6.2 Delete the altitude restriction at DET R334D30 3000ft.
 - 6.6.3 This has the effect of moving the <u>3000ft</u> restriction 2nm closer to the runway along the same track.
 - 6.6.4 Up-issue the SID chart to DET2R (Figure 14 on p.25).
 - As per the evidence supplied in paragraph 4.10 from p.14, aircraft already meet or exceed this proposed restriction.
- 6.7 Rwy 04 LAM2S (conventional)
 - 6.7.1 Change altitude restriction at LAM R025D09 from 3000ft to 3500ft.
 - 6.7.2 Up-issue the SID chart and coding table to LAM3S (Figure 18 on p.29).
 - 6.7.3 As per the evidence supplied in paragraph 4.10 from p.14, aircraft already meet or exceed this proposed restriction.
- 6.8 Rwy 22 LAM3R (conventional)
 - 6.8.1 Add an altitude restriction at BKY R154D13.8 3000ft.
 - Delete the altitude restriction at ROWAN (BKY R153.7D15.9) 3000ft.
 - 6.8.3 This has the effect of moving the 3000ft restriction 2.1nm closer to the runway along the same track.
 - 6.8.4 Up-issue the SID chart to LAM4R (Figure 18 on p.29).
 - 6.8.5 As per the evidence supplied in paragraph 4.9 from p.12, aircraft already meet or exceed this proposed restriction.

7. Engagement Summary and Additional Evidence

- 7.1 Stansted Airport 'owns' the SIDs.
 - 7.1.1 Its senior management supports the way forward (Section 10 Annex para 10.1).
- 7.2 Most flights at Stansted are operated by Ryanair (ten times as many flights as the second most frequent operator). From 01 June to 30 September 2021 (the same 121 day period as analysed, but for 2021) they operated over 66% of flights at Stansted, averaging c.111 flights per day.
 - 7.2.1 Ryanair's performance department has reviewed the proposed changes and does not consider them as limiting (Section 10 Annex para 10.2).
- 7.3 The second most frequent operator at Stansted is Jet2. From 01 June to 30 September 2021 they operated c.6% of flights at Stansted (c.10 flights per day on average).
 - 7.3.1 Jet2's performance department has reviewed the proposed changes and agreed that operating their flights in the same manner they do today would meet the increased altitude restrictions and would not result in increased power settings to do so (Section 10 Annex para 10.3).
- 7.4 Two operators, Ryanair and Jet2, accounted for c.72% of Stansted flights. Other operators at Stansted, accounted for the remaining 28%, but each operator had a far smaller proportion of flights (fewer than 4% per operator). 380 operators flew less frequently than once per week, and over 300 flew less frequently than once per month on average.
- 7.5 We contend this is sufficient engagement for the operators flying the majority of aircraft from Stansted to understand and accept these proposed changes.
- 7.6 Original unredacted emails for all three stakeholders will be forwarded to the CAA.
- 7.7 Additionally, our project team had opportunistic access to an Airbus A330 simulator and a Boeing 737-800 simulator for other project reasons.
 - 7.7.1 They were able to use spare time to input some test parameters and acquire photographs of the flight management system screens, which detail the predicted altitudes at each proposed restriction point.
 - 7.7.2 These are informal, however they support the conclusion drawn in this document.
 - 7.7.3 Those photographs will not be published but will be documented and sent direct to the CAA.

8. Overall Conclusion – and what happens next

- 8.1 The proposed SID amendments increase altitude restrictions. They would not change lateral distribution as a result.
- 8.2 This would be a technical change to aeronautical data charts and coding tables. The overwhelming majority of aircraft (99.8%) already fly the same (or greater) altitudes by the proposed restriction points.
- 8.3 Therefore, we cannot guarantee that there would be no changes to thrust settings due to this proposal. However, the evidence we have supplied strongly suggests that this would apply only to rare outliers in minuscule proportions (0.2%). Environmental impacts may occur due to thrust settings, but they would be neither discernible nor measurable.
- 8.4 Neither would the change restrict climbs any more than they are restricted today.
- 8.5 The climb restrictions would be moved closer to what are already flown, in order to achieve the goal of raising the CAS bases as per the originally submitted ACP.
- 8.6 Separately, a NATS Approved Procedure Designer has submitted an appropriate Instrument Flight Procedure (IFP) data package in accordance with CAA requirements.
- 8.7 This will be assessed by the CAA's IFP regulators and, presuming they are approved, a formal AIP change request for these 8 SIDs will be submitted by NATS on behalf of Stansted Airport, in late November 2021 to be implemented in AIRAC02-2022 (24th February 2022).

9. ANNEX: Draft charts and coding tables (the following 12 pages)

Note: these are draft charts and tables to illustrate proposed changes to SIDs, they are not for flight. A separate formal instrument flight procedure package of data has been supplied to the CAA for their evaluation.

(This page is for pagination purposes)

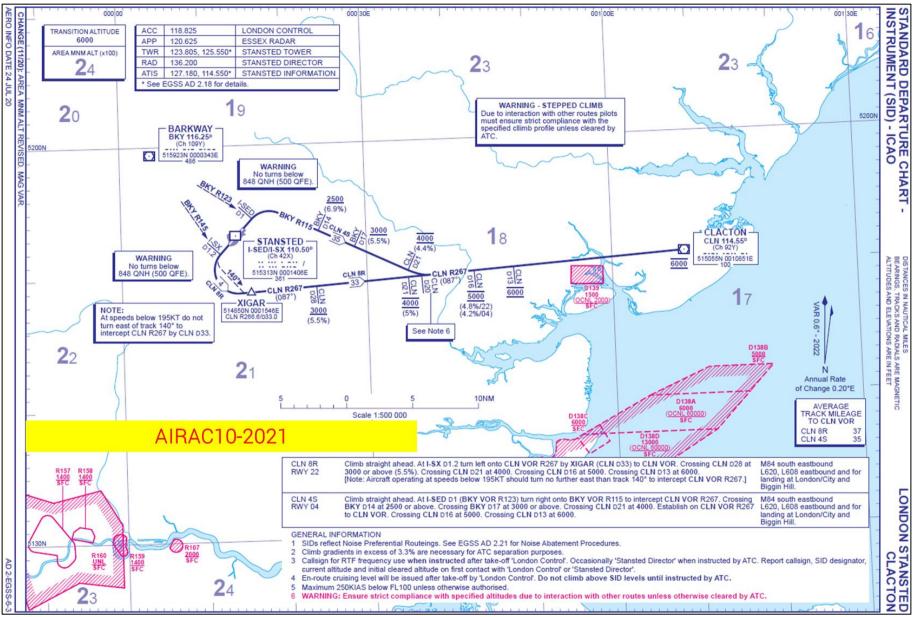


Figure 9 Current Rwy 04 CLN4S and Rwy 22 CLN8R as per AIRAC10-2021

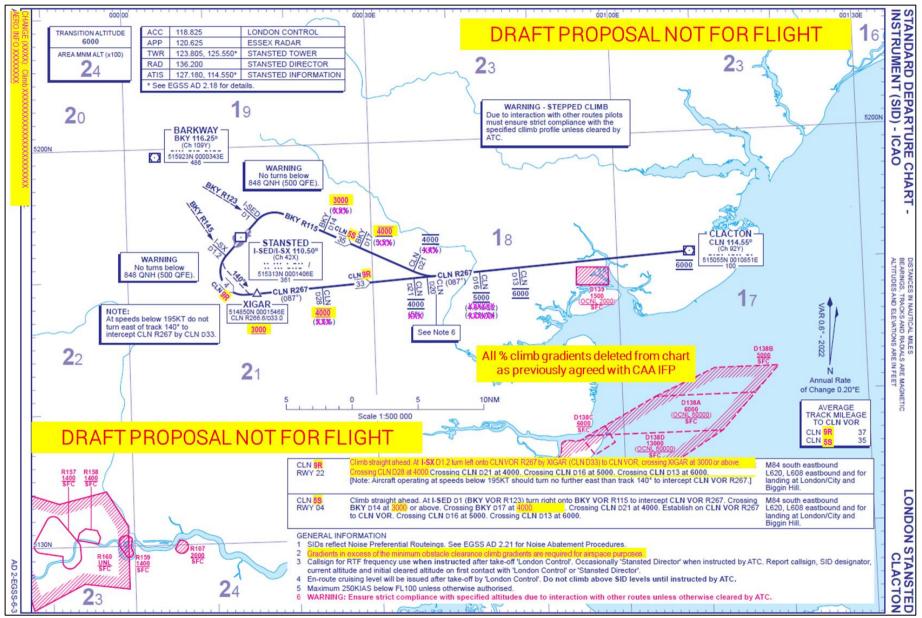


Figure 10 Rwy 04 CLN4S and Rwy 22 CLN8R, to CLN5S and CLN9R (conventional)

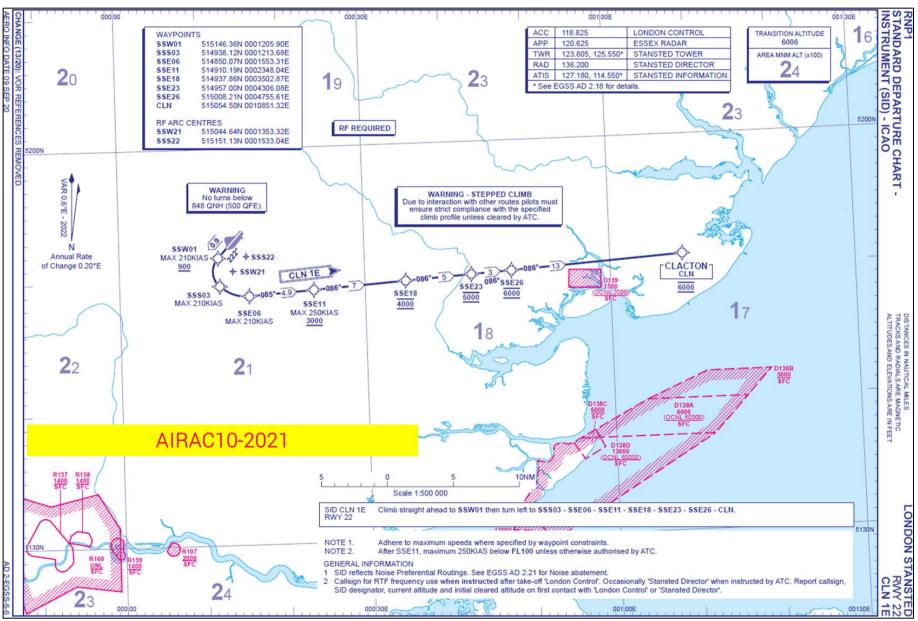


Figure 11 Current Rwy 22 CLN1E as per AIRAC10-2021

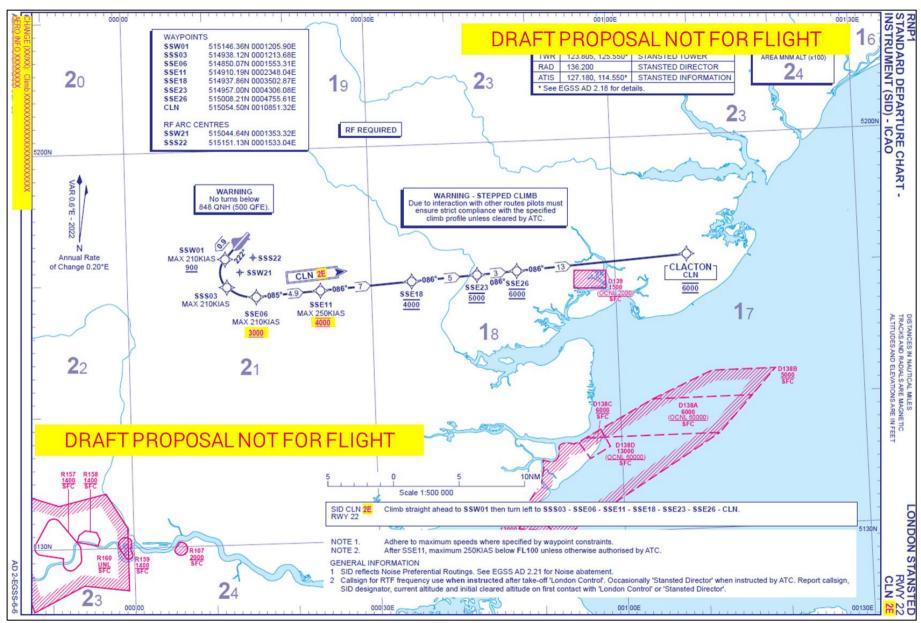


Figure 12 Rwy 22 CLN1E, to CLN2E (RNP1) Chart

Figure 13 Current Rwy 04 DET1S and Rwy 22 DET1R as per AIRAC10-2021

Figure 14 Rwy 04 DET1S and Rwy 22 DET1R, to DET2S and DET2R (conventional)

Figure 15 Current Rwy 04 DET1D as per AIRAC10-2021

Figure 16 Rwy 04 DET1D, to DET2D (RNP1) Chart

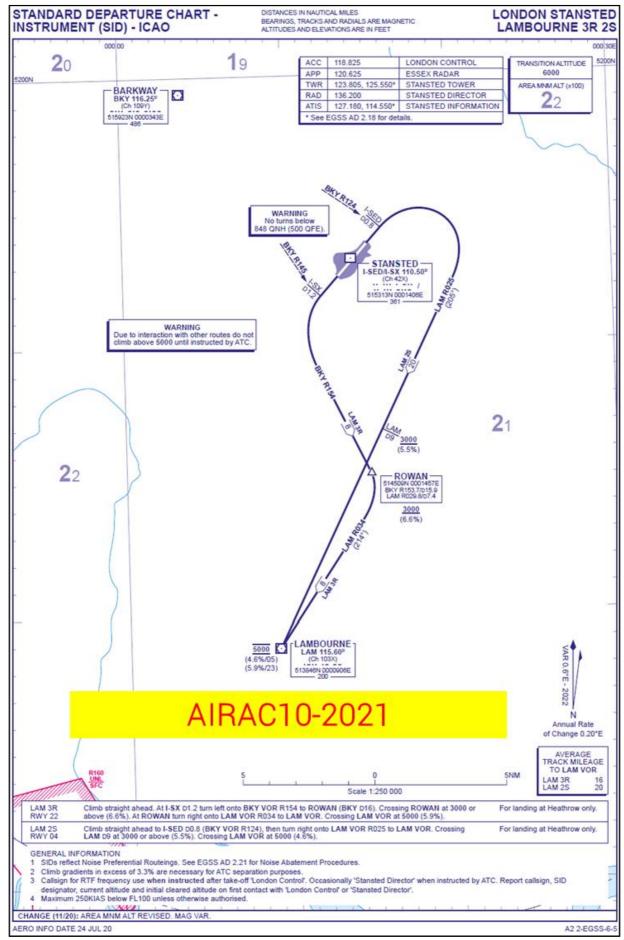


Figure 17 Current Rwy 22 LAM3R and Rwy 04 LAM2S as per AIRAC10-2021

Figure 18 Proposed Rwy 22 LAM3R and Rwy 04 LAM2S, to LAM4R and LAM3S (conventional)

CHANGE (13/20): VOR REFERENCES REMOVED AERO INFO DATE 09 SEP 20

AD 2-EGSS-6-8

Standard Instrument Departure Coding Tables

AIRAC10-2021

London Stansted Runway 22 CLN 1E

	Sequence	Path	Waypoint	Waypoint	Arc Centre	Arc Centre	Flv-	Course/	Magnetic	Distance	Turn	Level	Speed	Navigation
Designator	I	Term-	Name	Co-ordinates	Name	Co-ordinates	over	Track	Variation	(NM)		Constraint	Constraint	Performance
Doorginator		inator						°M (°T)		` ′			(KT)	
CLN 1E	001	CF	SSW01	515146.36N	-	-	N	222°	0.6	0.9	-	+900	-210	RNP1
				0001205.90E				(222.9°)						
CLN 1E	002	RF	SSS03	514938.12N	SSW21	515044.64N	N	-	0.6	-	LEFT	-	-210	RNP1
				0001213.68E		0001353.32E								
CLN 1E	003	RF	SSE06	514850.07N	SSS22	515151.13N	N	-	0.6	-	LEFT	-	-210	RNP1
				0001553.31E		0001533.04E								
CLN 1E	004	TF	SSE11	514910.19N	-	-	N	085°	0.6	4.9	-	+3000	-250	RNP1
				0002348.04E				(086.0°)						
CLN 1E	005	TF	SSE18	514937.86N	-	-	N	086°	0.6	7.0	-	4000	-	RNP1
				0003502.87E				(086.3°)						
CLN 1E	006	TF	SSE23	514957.00N	-	-	N	086°	0.6	5.0	-	5000	-	RNP1
				0004306.08E				(086.3°)						
CLN 1E	007	TF	SSE26	515008.21N	-	-	N	086°	0.6	3.0	-	6000	-	RNP1
				0004755.61E				(086.4°)						
CLN 1E	008	TF	CLN	515054.50N	-	-	N	086°	0.6	13.0	-	6000	-	RNP1
				0010851.32E				(086.5°)						

Figure 19 RNP1 Coding Table: (above) Current Rwy 22 CLN1E as per AIRAC10-2021, (below) proposed CLN2E

Standard Instrument Departure Coding Tables

DRAFT PROPOSAL NOT FOR FLIGHT

London Stansted Runway 22 CLN ZE

	Sequence	Path	Waypoint	Waypoint	Arc Centre	Arc Centre	Fly-	Course/	Magnetic	Distance	Turn	Level	Speed	Navigation
Designator	Number	Term-	Name	Co-ordinates	Name	Co-ordinates	over	Track	Variation	(NM)	Direction	Constraint	Constraint	Performance
-		inator						°M (°T)					(KT)	
CLN 2E	001	CF	SSW01	515146.36N	-	-	N	222°	0.6	0.9	-	+900	-210	RNP1
				0001205.90E				(222.9°)						
CLN 2E	002	RF	SSS03	514938.12N	SSW21	515044.64N	N	-	0.6	-	LEFT	-	-210	RNP1
				0001213.68E		0001353.32E								
CLN 2E	003	RF	SSE06	514850.07N	SSS22	515151.13N	N	-	0.6	-	LEFT	+3000	-210	RNP1
				0001553.31E		0001533.04E								
CLN 2E	004	TF	SSE11	514910.19N	-	-	N	085°	0.6	4.9	-	4000	-250	RNP1
				0002348.04E				(086.0°)						
CLN 2E	005	TF	SSE18	514937.86N	-	-	N	086°	0.6	7.0	-	4000	-	RNP1
				0003502.87E				(086.3°)						
CLN 2E	006	TF	SSE23	514957.00N	-	-	N	086°	0.6	5.0	-	5000	-	RNP1
				0004306.08E				(086.3°)						
CLN 2E	007	TF	SSE26	515008.21N	-	-	N	086°	0.6	3.0	-	6000	-	RNP1
				0004755.61E				(086.4°)						
CLN 2E	800	TF	CLN	515054.50N	-	-	N	086°	0.6	13.0	-	6000	-	RNP1
				0010851.32E	1		ı	(086.5°)	1		1		l	

AD 2-EGSS-6-8

Standard Instrument Departure Coding Tables

AIRAC10-2021

London Stansted Runway 04 DET 1D

	Sequence	Path	Waypoint	Waypoint	Arc Centre	Arc Centre	Fly-	Course/	Magnetic	Distance	Turn	Level	Speed	Navigation
Designator	Number	Term-	Name	Co-ordinates	Name	Co-ordinates	over	Track	Variation	(NM)	Direction	Constraint	Constraint	Performance
		inator						°M (°T)					(KT)	
DET 1D	001	CF	SSN01	515417.69N	-	-	N	042°	0.6	0.6	-	+900	-200	RNP1
				0001552.90E				(042.9°)						
DET 1D	002	RF	SSE02	515439.01N	SSN21	515329.61N	N	-	0.6	-	RIGHT	-	-200	RNP1
				0001737.69E		0001716.53E								
DET 1D	003	RF	SSE05	515229.73N	SSE22	515308.66N	N	-	0.6	-	RIGHT	-	-200	RNP1
				0001924.75E		0001710.14E								
DET 1D	004	TF	SSS11	514654.90N	- 1	-	N	204°	0.6	6.2	-	+3000	-250	RNP1
				0001512.38E				(205.1°)						
DET 1D	005	TF	SSS12	514553.58N	-	-	N	204°	0.6	1.1	LEFT	-	-	RNP1
				0001426.28E				(205.0°)						
DET 1D	006	TF	SSS18	514045.12N	- 1	-	N	153°	0.6	5.7	-	5000	-	RNP1
				0001831.92E				(153.7°)						
DET 1D	007	TF	NEPNA	512958.40N	-	-	N	153°	0.6	12.0	-	-	-	RNP1
				0002656.78E				(153.7°)						
DET 1D	800	TF	DET	511814.41N	-	-	N	154°	0.6	13.0	-	5000	-	RNP1
				0003550.19E				(154.5°)						

Figure 20 RNP1 Coding Table: (above) Current Rwy 04 DET1D as per AIRAC10-2021, (below) proposed DET2D

Standard Instrument Departure Coding Tables

DRAFT PROPOSAL NOT FOR FLIGHT

London Stansted Runway 04 DET 2D

	Sequence	Path	Waypoint	Waypoint	Arc Centre	Arc Centre	Fly-	Course/	Magnetic	Distance	Turn	Level	Speed	Navigation
Designator	Number	Term-	Name	Co-ordinates	Name	Co-ordinates	over	Track	Variation	(NM)	Direction	Constraint	Constraint	Performance
		inator						°M (°T)					(KT)	
DET 2D	001	CF	SSN01	515417.69N	-	-	N	042°	0.6	0.6	-	+900	-200	RNP1
				0001552.90E				(042.9°)						
DET 2D	002	RF	SSE02	515439.01N	SSN21	515329.61N	N	-	0.6	-	RIGHT	-	-200	RNP1
				0001737.69E		0001716.53E								
DET 2D	003	RF	SSE05	515229.73N	SSE22	515308.66N	N	-	0.6	-	RIGHT	-	-200	RNP1
				0001924.75E		0001710.14E								
DET 2D	004	TF	SSS11	514654.90N	-	-	N	204°	0.6	6.2	-	+3500	-250	RNP1
				0001512.38E				(205.1°)						
DET 2D	005	TF	SSS12	514553.58N	-	-	N	204°	0.6	1.1	LEFT	-	-	RNP1
				0001426.28E				(205.0°)						
DET 2D	006	TF	SSS18	514045.12N	-	-	N	153°	0.6	5.7	-	5000	-	RNP1
				0001831.92E				(153.7°)						
DET 2D	007	TF	NEPNA	512958.40N	-	-	N	153°	0.6	12.0	-	-	-	RNP1
				0002656.78E				(153.7°)						
DET 2D	008	TF	DET	511814.41N	-	-	N	154°	0.6	13.0	-	5000	-	RNP1
				0003550.19E				(154.5°)						

CHANGE (13/20): VOR REFERENCES REMOVED. SEQUENCE NUMBER 003 ARC CENTRE NAME CORRECTED. AERO INFO DATE 18 SEP 20

10. ANNEX: Engagement Emails (Redacted)

10.1 MAG Stansted Airport:

10.2 Ryanair:

10.3 Jet2:

End of document