Swanwick Airspace Improvement Programme Airspace Development 5 LAC West – ATS Route Connectivity Improvements

SAIP AD5 LAC West Connectivity

Gateway documentation: Stage 2 Develop and Assess

Step 2A (ii) Design Principle Evaluation

NATS

NATS Uncontrolled © 2018 NATS (En-route) plc, ('NERL') all rights reserved

Roles

Action	Role	Date
Produced	Airspace Change Specialist NATS Future Airspace and ATM	07/12/2018
Reviewed Approved	ATC Lead NATS Swanwick Development	07/12/2018
Reviewed Approved	Development ATCO NATS Swanwick Development	07/12/2018
Reviewed Approved	SAIP AD5 Project Manager L5250 Operations & Airspace Programme Delivery	07/12/2018

Drafting and Publication History

Issue	Month/Year	Changes this issue
1.0	16 Nov	Published to the CAA online portal
2.0	29 Nov	Updated and resubmitted, following clarifications from SARG
3.0	07 Dec	Updated and resubmitted, following additional clarifications from SARG
4.0	14 Dec	Updated and resubmitted, following additional clarifications from SARG
5.0	19 Dec	Updated and resubmitted, following pagination amendment

Introduction

This document forms part of the document set in accordance with the requirements of the CAP1616 airspace change process.

This document is divided into five main sections, describing design option concepts relating to Birmingham traffic, Heathrow arrivals, high-level ATS routes, TRA 002 arrangements, and combinations of CAS volumes.

It is designed to be read in conjunction with document Step 2A(i) which describes and illustrates each component or combination.

This document aims to provide adequate evidence to satisfy Stage 2 Develop and Assess Gateway, Step 2A Design Principle Evaluation.

See Stage 1 Gateway Design Principles for full details of the six proposed design principles¹.

A green box means	'this design principle has been met by the specified option'
An orange box means	'this design principle has been partially met by the specified option', or 'there would be no significant change'
A red box means	'this design principle has not been met by the specified option'

The first part of this document evaluates each component against the Design Principles (DPs), rejecting the worst-scoring items.

The progression of design components through this evaluation process will then be considered in viable combinations later in the document, concluding with reasonable system options to consider at the next CAP1616 Step 2B Options Appraisal.

¹ Safety is always a design principle - it is not included in this table because it is mandatory.

Baseline Options

1. EGBB Baseline (do nothing)

Option Name: EGBB Baseline (do nothing)	REJECT			
Description of option: The current traffic flows relevant to this proposal are the EGBB arrivals and departures which route via MOSUN. Traffic is required to tactically leave CAS between the DTY CTA and Cotswold CTA.				
Design principle 1: Operational: Increase in predictable flight planning for operators and ATC flexibility to better manage busy flows (Priority C)	NOT MET			
No improvement from today's operation.				
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)		PARTIAL		
No resources required.				
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂ emissions where possible (Priority B)		PARTIAL		
No change to existing arrangements,				
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)		PARTIAL		
No change to existing arrangements.				
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)		PARTIAL		
No change to existing arrangements.				
Design principle 6: Operational: Full ANSP agreement (Priority B)		PARTIAL		
No change to existing arrangements.				

2. EGLL Baseline (do nothing)

Option Name: EGLL Baseline (do nothing)			REJECT
Description of option: The current routes relevant to this proposal bring EGLL arriva full, EGLL arrivals are routed from OCK to BNN, often at late-notice, which can created the compared to the term of term			re. If the OCK stack if
Design principle 1: Operational: Increase in predictable flight planning for operators and ATC flexibility to better manage busy flows (Priority C)	NOT MET		
No improvement from today's operation.			
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)		PARTIAL	
No resources required.			
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂ emissions where possible (Priority B)		PARTIAL	
No change to existing arrangements,			
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)		PARTIAL	
No change to existing arrangements.			
Design principle 5: Technical: Minimise negative impact on other airspace users		PARTIAL	
(Priority C)			
No change to existing arrangements.			
Design principle 6: Operational: Full ANSP agreement (Priority B)		PARTIAL	
No change to existing arrangements.			

EGBB Concept Options

The following seven options are all component variations of the same design concept. This option contains indicative routes for EGBB arrivals and departures which are contained within four distinct blocks of CAS. The CAS bases have been chosen to align, where possible, with typical descent and departure profiles. A larger volume of CAS, close to EGBB, has been proposed in order to provide an increased vectoring area.

3. EGBB-1A

Option Name: EGBB-1A			REJECT
Description of option: All proposed new CAS volumes to be Class A			
Design principle 1: Operational: Increase in predictable flight planning for			MET
operators and ATC flexibility to better manage busy flows (Priority C)			
Provides more predictable and optimal flight planning options for EGBB arrivals a	nd departures.		
Design principle 2: Operational: Minimise resources needed to progress the			MET
proposal (Priority C)			
Class A CAS would cause no particular impact on resources.			
Design principle 3: Environmental: Avoid low-level changes and reduce CO_2		PARTIAL	
emissions where possible (Priority B)			
The routes would provide a CO ₂ reduction for relevant EGBB traffic, which would it	5	7,000ft.	
A new FL65 CAS base may cause some GA flights to reroute or fly lower than the	y do today.		
Design principle 4: Economic: Reduce flight plan mileage and associated fuel			MET
uplift/ burn (Priority C)			
The routes would provide a fuel burn benefit (cost saving).			
Design principle 5: Technical: Minimise negative impact on other airspace users	NOT MET		
(Priority C)			
Extensive Class A airspace would negatively impact and inhibit GA users to an ex			
traffic. Design options EGBB-1B, 1C or 1D would allow VFR access to varying ext		1A not meeting	this Design Principle.
Design principle 6: Operational: Full ANSP agreement (Priority B)	NOT MET		
NATS does not intend to propose the introduction of additional low level Class A	CAS in this region.		

4. EGBB-1B

Option Name: EGBB-1B		ACCEPT	and PROGRESS	
Description of option: All proposed new CAS volumes to be Class C	•			
Design principle 1: Operational: Increase in predictable flight planning for			MET	
operators and ATC flexibility to better manage busy flows (Priority C)				
Provides more predictable and optimal flight planning options for EGBB arrivals ar	nd departures.			
Design principle 2: Operational: Minimise resources needed to progress the			MET	
proposal (Priority C)				
Class C does not change the resource requirements compared to EGBB-1A.				
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂		PARTIAL		
emissions where possible (Priority B)				
The routes would provide a CO ₂ reduction for relevant EGBB traffic, which would not change below 7,000ft.				
A new FL65 CAS base may cause some GA flights to reroute or fly lower than they	/ do today.		_	
Design principle 4: Economic: Reduce flight plan mileage and associated fuel			MET	
uplift/ burn (Priority C)				
The routes would provide a fuel burn benefit (cost saving).				
Design principle 5: Technical: Minimise negative impact on other airspace users		PARTIAL		
(Priority C)				
There would be a partial impact on GA and MoD users which would be managed a		ver the impact	would be less than for	
design option EGBB-1A as VFR traffic would have limited access, rather than no a	ccess.			
Design principle 6: Operational: Full ANSP agreement (Priority B)			MET	
Dependent on where this classification is used - Class C airspace is appropriate for				
Increased tactical flexibility for EGBB/ TC MIDS. No new training would be require	ed, unlike for desigr	n options EGBB	-1C or 1D.	

5. EGBB-1C

Option Name: EGBB-1C		ACCEPT	and PROGRESS
Description of option: All proposed new CAS volumes to be Class D	•		
Design principle 1: Operational: Increase in predictable flight planning for			MET
operators and ATC flexibility to better manage busy flows (Priority C)			
Provides more predictable and optimal flight planning options for EGBB arrivals a	nd departures.		
Design principle 2: Operational: Minimise resources needed to progress the		PARTIAL	
proposal (Priority C)			
Additional training may be required if Class D was introduced to areas which do n	ot currently use it i	.e. SWK upper a	airspace sectors. This
would potentially require more resources than for design options EGBB-1A or 1B.			
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂		PARTIAL	
emissions where possible (Priority B)			
The routes would provide a CO_2 reduction for relevant EGBB traffic, which would r	not change below 7	7,000ft.	
A new FL65 CAS base may cause some GA flights to reroute or fly lower than the	y do today.		
Design principle 4: Economic: Reduce flight plan mileage and associated fuel			MET
ıplift/ burn (Priority C)			
The routes would provide a fuel burn benefit (cost saving).			
Design principle 5: Technical: Minimise negative impact on other airspace users		PARTIAL	
Priority C)			
Fhere would be a partial impact on GA and MoD users which would be managed a	accordingly. Howe	ever the impact	would be less than for
design option EGBB-1A or 1B as VFR traffic would have access with a clearance,	rather than limited	or no access.	
Design principle 6: Operational: Full ANSP agreement (Priority B)		PARTIAL	
Dependent on where this classification is used - Class D airspace is appropriate for	or lower airspace w	vhere it is alread	dy used in the region, i.e
around EGBB. It would provide increased tactical flexibility.			-
lowever it is not ourrently used in CN/K upper sireness and significant training we	بالمام بيمينينيمما (م.	alalitiana al V/CD tu	offic) unlike for design

However it is not currently used in SWK upper airspace and significant training would be required (additional VFR traffic), unlike for design option EGBB-1B. VFR traffic is not compatible with currently used trajectory-based controller tools. This has been scored as 'PARTIAL' due to the unknown element of where this design concept could be implemented.

EGBB-1D 6.

Option Name: EGBB-1D	REJECT				
Description of option: All proposed new CAS volumes to be Class E					
Design principle 1: Operational: Increase in predictable flight planning for		PARTIAL			
operators and ATC flexibility to better manage busy flows (Priority C)					
Provides more predictable and optimal flight planning options for EGBB arrivals a			may not want to use		
Class E airspace due to perceived risks. This would not be an issue for design op	tions EGBB-1A, 1B o				
Design principle 2: Operational: Minimise resources needed to progress the		PARTIAL			
proposal (Priority C)					
Additional training would be required if Class E was introduced to areas which do		e.g. SWK upper	airspace sectors.		
This would potentially require more resources than for design options EGBB-1A or	r 1B.				
Design principle 3: Environmental: Avoid low-level changes and reduce CO_2		PARTIAL			
emissions where possible (Priority B)					
The routes would provide a CO_2 reduction for relevant EGBB traffic, which would r		,000ft.			
A new FL65 CAS base may cause some GA flights to reroute or fly lower than they	/ do today.				
Design principle 4: Economic: Reduce flight plan mileage and associated fuel		PARTIAL			
uplift/ burn (Priority C)					
The routes would provide a fuel burn benefit (cost saving) however airlines may not choose to use them as much, due to Class E airspace.					
This would not be an issue for design options EGBB-1A, 1B or 1C.					
Design principle 5: Technical: Minimise negative impact on other airspace users		PARTIAL			
(Priority C)					
Class E airspace would mitigate GA community concern, however it would likely ir					
also still be some impact on GA and MoD users which would be managed accord		impact would b	e less than for EGBB-		
1A as VFR traffic would have access without a clearance required, rather than no					
Design principle 6: Operational: Full ANSP agreement (Priority B)	NOT MET				
Class E airspace is not currently used in SWK airspace, therefore significant retrai	ning would be requ	ired, unlike for d	esign option EGBB-1B.		
VFR traffic is not compatible with currently used trajectory-based controller tools.	Class E airspace v	vould also introd	duce a new controller		
workload burden. This level of impact is not acceptable to NATS; therefore this Design Principle is not met.					

7. EGBB-1E

Option Name: EGBB-1E			REJECT	
Description of option: New routes and CAS to be established H24/365; with appropriate clawback arrangements				
Design principle 1: Operational: Increase in predictable flight planning for			MET	
operators and ATC flexibility to better manage busy flows (Priority C)				
Provides more predictable and optimal flight planning options for EGBB arrivals a	nd departures. Avai	lable H24.		
Design principle 2: Operational: Minimise resources needed to progress the			MET	
proposal (Priority C)				
No additional training or manning requirements due to this timing.				
Design principle 3: Environmental: Avoid low-level changes and reduce CO_2		PARTIAL		
emissions where possible (Priority B)				
The routes would provide a CO ₂ reduction for relevant EGBB traffic H24, which would not change below 7,000ft.				
A new FL65 CAS base may cause some GA flights to reroute or fly lower than they	/ do today.			
Design principle 4: Economic: Reduce flight plan mileage and associated fuel			MET	
uplift/ burn (Priority C)				
The routes would provide the maximum possible fuel burn benefit (cost saving).				
Design principle 5: Technical: Minimise negative impact on other airspace users	NOT MET			
(Priority C)				
H24 operations would cause a large impact to MoD and GA airspace users. The r		rs have indicate	d that this is likely to	
be considered as unacceptable when compared to design options EGBB-1F or 1G			1	
Design principle 6: Operational: Full ANSP agreement (Priority B)	NOT MET			
Maximum usage and tactical flexibility for SWK and Birmingham Radar. However this does not meet this Design Principle as the MoD has				
stated that they would not support H24.				

8. EGBB-1F

Option Name: EGBB-1F	ACCEPT and PROGRESS			
Description of option: New routes and CAS to be established evenings/ overnights/ mornings, 7 days a week, with appropriate clawback				
arrangements				
Design principle 1: Operational: Increase in predictable flight planning for	MET			
operators and ATC flexibility to better manage busy flows (Priority C)				
Provides more predictable and optimal flight planning options for EGBB arrivals ar lesser extent than EGLL-1E and EGLL-1G.	and departures. This Design Principle is met, however to a			
Design principle 2: Operational: Minimise resources needed to progress the	MET			
proposal (Priority C)				
No additional training or manning requirements due to FUA timings, however activ	tivation/deactivation requires resource to manage.			
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂	PARTIAL			
emissions where possible (Priority B)				
The routes would provide a CO ₂ reduction for these time periods for relevant EGBB traffic, which would not change below 7,000ft.				
A new FL65 CAS base may cause some GA flights to reroute or fly lower than they				
Design principle 4: Economic: Reduce flight plan mileage and associated fuel	MET			
uplift/ burn (Priority C)				
The routes would provide a fuel burn benefit (cost saving) but less often than for a	design options EGBB-1E or 1G.			
Design principle 5: Technical: Minimise negative impact on other airspace users	PARTIAL			
(Priority C)				
Timings would cause a partial impact to MoD and GA airspace users, outside thei	eir typical core daytime operating hours. This would be to			
a lesser extent than for design option EGBB-1E.				
Design principle 6: Operational: Full ANSP agreement (Priority B)	PARTIAL			
Slightly limited usage and tactical flexibility for Birmingham Radar/ TC MIDS. The concept, unlike design option EGBB-1E.	e MoD has indicated that they would support this design			

9. EGBB-1G

Option Name: EGBB-1G		ACCEPT	and PROGRESS
Description of option: New routes and CAS to be established evenings/ overnights/ appropriate clawback arrangements	mornings during th	ne week, and H24	4 at weekends; with
Design principle 1: Operational: Increase in predictable flight planning for operators and ATC flexibility to better manage busy flows (Priority C)			MET
Provides more predictable and optimal flight planning options for EGBB arrivals a Not available 24/7.	nd departures, min	nicking current A	ATSOCAS availability.
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)			MET
No additional training or manning requirements due to FUA timings, however acti	vation/deactivation	n requires resour	rce to manage.
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂ emissions where possible (Priority B)		PARTIAL	
The routes would provide a CO_2 reduction for these time periods for relevant EGB A new FL65 CAS base may cause some GA flights to reroute or fly lower than the		uld not change b	pelow 7,000ft.
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)			MET
The routes would provide a fuel burn benefit (cost saving) more often than EGBB-	·1F.	•	
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)		PARTIAL	
The timings would cause a partial impact to MoD and GA airspace users (less that but potentially impacting GA at weekends. This would be to a lesser extent than the second secon			ekday daytime hours
Design principle 6: Operational: Full ANSP agreement (Priority B)		PARTIAL	
Slightly limited usage and tactical flexibility for Birmingham Radar/ TC MIDS (mor impact). The MoD has indicated they are more likely to support this design option	,		more potential GA

The following seven options are all component variations of the same design concept. This option contains the same indicative routes for EGBB arrivals and departures as the first sub-options; EGBB-1A – EGBB-1G. However, the segment of CAS close to EGBB has been reduced in size, in order to reduce the amount of new CAS required.

10. EGBB-2A

Option Name: EGBB-2A			REJECT
Description of option: All proposed new CAS volumes to be Class A	1		
Design principle 1: Operational: Increase in predictable flight planning for			MET
operators and ATC flexibility to better manage busy flows (Priority C)			
Provides more predictable and optimal flight planning options for EGBB arrivals a	nd departures.		
Design principle 2: Operational: Minimise resources needed to progress the			MET
proposal (Priority C)			
Class A CAS would cause no particular impact on resources.			
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂		PARTIAL	
emissions where possible (Priority B)			
The routes would provide a CO ₂ reduction for relevant EGBB traffic, which would r	not change below	7,000ft.	
A new FL65 CAS base may cause some GA flights to reroute or fly lower than the	y do today.		
Design principle 4: Economic: Reduce flight plan mileage and associated fuel			MET
uplift/ burn (Priority C)			
The routes would provide a fuel burn benefit (cost saving).			
Design principle 5: Technical: Minimise negative impact on other airspace users	NOT MET		
(Priority C)			
Extensive Class A airspace would negatively impact and inhibit GA users to an ext			
traffic. Design options EGBB-2B, 2C or 2D would allow VFR access to varying exte	ents, hence EGBB-	2A not meeting	this Design Principle.
Design principle 6: Operational: Full ANSP agreement (Priority B)	NOT MET		
NATS does not intend to propose the introduction of additional low level Class A (CAS in this region.		

11. EGBB-2B

Option Name: EGBB-2B		ACCEPT	and PROGRESS		
Description of option: All proposed new CAS volumes to be Class C					
Design principle 1: Operational: Increase in predictable flight planning for			MET		
operators and ATC flexibility to better manage busy flows (Priority C)					
Provides more predictable and optimal flight planning options for EGBB arrivals a	nd departures.				
Design principle 2: Operational: Minimise resources needed to progress the			MET		
proposal (Priority C)					
Class C does not change the resource requirements compared to EGBB-2A.					
Design principle 3: Environmental: Avoid low-level changes and reduce CO_2		PARTIAL			
emissions where possible (Priority B)					
The routes would provide a CO ₂ reduction for relevant EGBB traffic, which would r		7,000ft.			
A new FL65 CAS base may cause some GA flights to reroute or fly lower than the	/ do today.	r			
Design principle 4: Economic: Reduce flight plan mileage and associated fuel			MET		
uplift/ burn (Priority C)					
The routes would provide a fuel burn benefit (cost saving).	r				
Design principle 5: Technical: Minimise negative impact on other airspace users		PARTIAL			
(Priority C)					
The amount of new CAS has been reduced in order to reduce the impact on the G					
and MoD users which would have to be managed accordingly. However the impa	ct would be less th	nan for design op	otion EGBB-2A as VFR		
traffic would have limited access, rather than no access.	r	r			
Design principle 6: Operational: Full ANSP agreement (Priority B)			MET		
Dependent on where this classification is used - Class C airspace appropriate for SWK upper airspace and is currently well used.					
Increased tactical flexibility for EGBB/ TC MIDS. No new training would be required, unlike for design options EGBB-2C or 2D.					

12. EGBB-2C

Option Name: EGBB-2C		ACCEPT	and PROGRESS
Description of option: All proposed new CAS volumes to be Class D			
Design principle 1: Operational: Increase in predictable flight planning for			MET
operators and ATC flexibility to better manage busy flows (Priority C)			
Provides more predictable and optimal flight planning options for EGBB arrivals and	nd departures.		
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)		PARTIAL	
Additional training may be required if Class D was introduced to areas which do no would potentially require more resources than design options EGBB-2A or 2B.	ot currently use it i	.e. SWK upper a	irspace sectors. This
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂ emissions where possible (Priority B)		PARTIAL	
The routes would provide a CO2 reduction for relevant EGBB traffic, which would r	not change below	7,000ft.	•
A new FL65 CAS base may cause some GA flights to reroute or fly lower than they	y do today.		
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)			MET
The routes would provide a fuel burn benefit (cost saving).			
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)		PARTIAL	
The amount of new CAS has been reduced in order to reduce the impact on the G and MoD users which would be managed accordingly. However the impact would traffic would have access with a clearance, rather than limited or no access.			
Design principle 6: Operational: Full ANSP agreement (Priority B)		PARTIAL	
Dependent on where this classification is used - Class D airspace is appropriate for around EGBB. It would provide increased tactical flexibility.	or lower airspace v		, -

However it is not currently used in SWK upper airspace and significant training would be required (additional VFR traffic), unlike for design option EGBB-2B. VFR traffic is not compatible with currently used trajectory-based controller tools. This has been scored as 'PARTIAL' due to the unknown element of where this design concept could be implemented.

13. EGBB-2D

Option Name: EGBB-2D	REJECT
Description of option: All proposed new CAS volumes to be Class E	
Design principle 1: Operational: Increase in predictable flight planning for	PARTIAL
operators and ATC flexibility to better manage busy flows (Priority C)	
Provides more predictable and optimal flight planning options for EGBB arrivals a	
Class E airspace due to perceived risks. This would not be an issue for design op	otions EGBB-2A, 2B or 2C.
Design principle 2: Operational: Minimise resources needed to progress the	PARTIAL
proposal (Priority C)	
Additional training would be required if Class E was introduced to areas which do	
This would potentially require more resources than for design options EGBB-2A o	
Design principle 3: Environmental: Avoid low-level changes and reduce CO_2	PARTIAL
emissions where possible (Priority B)	
The routes would provide a CO2 reduction for relevant EGBB traffic, which would r	
A new FL65 CAS base may cause some GA flights to reroute or fly lower than the	· · ·
Design principle 4: Economic: Reduce flight plan mileage and associated fuel	PARTIAL
uplift/ burn (Priority C)	
The routes would provide a fuel burn benefit (cost saving) however airlines may n	iot choose to use them as much, due to Class E airspace.
This would not be an issue for design options EGBB-2A, 2B or 2C.	DADTIAL
Design principle 5: Technical: Minimise negative impact on other airspace users	PARTIAL
(Priority C)	
The amount of new CAS has been reduced in order to reduce the impact on the G	
community concern, however it would likely impact upon commercial airspace us MoD users which would be managed accordingly. However the impact would be	
have access without a clearance required, rather than no access.	less that for design option EGDD-ZA as VFR traine would
Design principle 6: Operational: Full ANSP agreement (Priority B)	NOT MET
Class E airspace is not currently used in SWK airspace, therefore significant retrai	
VFR traffic is not compatible with currently used trajectory-based controller tools.	
workload burden. This level of impact is not acceptable to NATS: therefore this D	vesign Principle is not met.

14. EGBB-2E

Option Name: EGBB-2E	REJE	CT
Description of option: New routes and CAS to be established H24/ 365; with approp	priate clawback arrangements	
Design principle 1: Operational: Increase in predictable flight planning for	MET	
operators and ATC flexibility to better manage busy flows (Priority C)		
Provides more predictable and optimal flight planning options for EGBB arrivals a	and departures. Available H24.	
Design principle 2: Operational: Minimise resources needed to progress the	MET	
proposal (Priority C)		
No additional training or manning requirements due to this timing.		
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂	PARTIAL	
emissions where possible (Priority B)		
The routes would provide a CO ₂ reduction for relevant EGBB traffic, which would r		
A new FL65 CAS base may cause some GA flights to reroute or fly lower than they	ey do today.	
Design principle 4: Economic: Reduce flight plan mileage and associated fuel	MET	
uplift/ burn (Priority C)		
The routes would provide the maximum possible fuel burn benefit (cost saving).		
Design principle 5: Technical: Minimise negative impact on other airspace users	NOT MET	
(Priority C)		
H24 operations would cause a large impact to MoD and GA airspace users. The r		0
be considered as unacceptable when compared to design options EGBB-2F or 2G		
Design principle 6: Operational: Full ANSP agreement (Priority B)	NOT MET	
Maximum usage and tactical flexibility for SWK/ Birmingham Radar. However thi	nis does not meet this Design Principle as the MoD has	
stated that they would not support H24		

15. EGBB-2F

Option Name: EGBB-2F		ACCEPT	and PROGRESS
Description of option: New routes and CAS to be established evenings/ overnights, arrangements	mornings, 7 days	a week; with app	ropriate clawback
Design principle 1: Operational: Increase in predictable flight planning for operators and ATC flexibility to better manage busy flows (Priority C)			MET
Provides more predictable and optimal flight planning options for EGBB arrivals a lesser extent than EGLL-2E and EGLL-2F.	ind departures. Th	his Design Princi	ple is met, however to a
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)			MET
No additional training or manning requirements due to FUA timings, however act	ivation/deactivatio	n requires resou	rce to manage.
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂ emissions where possible (Priority B)		PÁRTIAL	
The routes would provide a CO_2 reduction for these time periods for relevant EGE A new FL65 CAS base may cause some GA flights to reroute or fly lower than the		ould not change l	below 7,000ft.
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)			MET
The routes would provide a fuel burn benefit (cost saving) but less often than for	design options EG	BB-2E or 2G.	
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)		PARTIAL	
The amount of new CAS has been reduced in order to reduce the impact on the C Timings would cause a partial impact to MoD and GA airspace users, outside the a lesser extent than for design option EGBB-2E.		ime operating ho	ours. This would be to
Design principle 6: Operational: Full ANSP agreement (Priority B)		PARTIAL	
Slightly limited usage and tactical flexibility for Birmingham Radar/ TC MIDS. Th concept, unlike design option EGBB-2E.	e MoD has indicate	ed that they wou	ld support this design

16. EGBB-2G

Option Name: EGBB-2G		ACCEPT	and PROGRESS
Description of option: New routes and CAS to be established evenings/ overnights/ appropriate clawback arrangements	mornings during th	ne week, and H2	4 at weekends; with
Design principle 1: Operational: Increase in predictable flight planning for operators and ATC flexibility to better manage busy flows (Priority C)			MET
Provides more predictable and optimal flight planning options for EGBB arrivals a Not available 24/7.	nd departures, min	nicking current A	ATSOCAS availability.
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)			MET
No additional training or manning requirements due to FUA timings, however acti	vation/deactivation		rce to manage.
Design principle 3: Environmental: Avoid low-level changes and reduce CO_2 emissions where possible (Priority B)		PARTIAL	
The routes would provide a CO_2 reduction for these time periods for relevant EGE A new FL65 CAS base may cause some GA flights to reroute or fly lower than the		uld not change l	pelow 7,000ft.
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)			MET
The routes would provide a fuel burn benefit (cost saving) more often than EGBB	-2F.		
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)		PARTIAL	
The amount of new CAS has been reduced in order to reduce the impact on the G to MoD and GA airspace users (less than EGBB-2F), outside MoD core weekday of This would be to a lesser extent than for design option EGBB-2E.			
Design principle 6: Operational: Full ANSP agreement (Priority B)		PARTIAL	
Slightly limited usage and tactical flexibility for Birmingham Radar/ TC MIDS (mo impact). The MoD has indicated that they are more likely to support this design of	,		

The following seven options are all variations of the same design option. This option contains a single bidirectional route for EGBB arrivals and departures; thus minimising new CAS required.

17. EGBB-3A

Option Name: EGBB-3A	REJECT				
Description of option: All proposed new CAS volumes to be Class A					
Design principle 1: Operational: Increase in predictable flight planning for	NOT MET				
operators and ATC flexibility to better manage busy flows (Priority C)					
Provides predictable and optimal flight planning options for EGBB arrivals and departures. However ATC ability to manage busy					
bidirectional flows would be significantly compromised due to lack of systemisat workload.	ion, requiring more	tactical vectorir	ig and an increased		
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)			MET		
Class A CAS would cause no particular impact on resources.					
Design principle 3: Environmental: Avoid low-level changes and reduce CO_2		PARTIAL			
emissions where possible (Priority B)					
The routes would provide a CO2 reduction for relevant EGBB traffic, which would i		′,000ft.			
A new FL65 CAS base may cause some GA flights to reroute or fly lower than the	y do today.				
Design principle 4: Economic: Reduce flight plan mileage and associated fuel			MET		
uplift/ burn (Priority C)					
The routes would provide a fuel burn benefit (cost saving).					
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)	NOT MET				
Extensive Class A airspace would negatively impact and inhibit GA users to an ex	tent which is likely	to be unaccepta	ble, as it excludes VFR		
traffic. Design options EGBB-3B, 3C or 3D would allow VFR access to varying ext		3A not meeting t	this Design Principle.		
Airspace required would not be significantly reduced compared with concepts EG	BB-1 and EGBB-2.				
Design principle 6: Operational: Full ANSP agreement (Priority B)	NOT MET				
NATS does not intend to propose the introduction of additional low level Class A	CAS in this region.				

18. EGBB-3B

Option Name: EGBB-3B	REJECT				
Description of option: All proposed new CAS volumes to be Class C					
Design principle 1: Operational: Increase in predictable flight planning for	NOT MET				
operators and ATC flexibility to better manage busy flows (Priority C)					
Provides predictable and optimal flight planning options for EGBB arrivals and de					
bidirectional flows would be significantly compromised due to lack of systemisat	ion, requiring more	tactical vectori	ng and an increased		
workload.					
Design principle 2: Operational: Minimise resources needed to progress the			MET		
proposal (Priority C)					
Class C does not change the resource requirements compared to EGBB-3A.					
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂		PARTIAL			
emissions where possible (Priority B)					
The routes would provide a CO ₂ reduction for relevant EGBB traffic, which would r	not change below 7	7,000ft.			
A new FL65 CAS base may cause some GA flights to reroute or fly lower than the	y do today.				
Design principle 4: Economic: Reduce flight plan mileage and associated fuel			MET		
uplift/ burn (Priority C)					
The routes would provide a fuel burn benefit (cost saving).					
Design principle 5: Technical: Minimise negative impact on other airspace users		PARTIAL			
(Priority C)					
There would be a partial impact on GA and MoD users which would be managed	accordingly. Howe	ever the impact	would be less than for		
design option EGBB-3A as VFR traffic would have limited access, rather than no a	ICCESS.				
Airspace required would not be significantly reduced compared with concepts EG	BB-1 and EGBB-2.				
Design principle 6: Operational: Full ANSP agreement (Priority B)			MET		
Dependent on where this classification is used - Class C airspace is appropriate for					
Increased tactical flexibility for EGBB/ TC MIDS. No new training would be required, unlike for design options EGBB-3C or 3D.					

19. EGBB-3C

Option Name: EGBB-3C			REJECT
Description of option: All proposed new CAS volumes to be Class D			
Design principle 1: Operational: Increase in predictable flight planning for	NOT MET		
operators and ATC flexibility to better manage busy flows (Priority C)			
Provides predictable and optimal flight planning options for EGBB arrivals and de bidirectional flows would be significantly compromised due to lack of systemisat workload.			
		PARTIAL	
Design principle 2: Operational: Minimise resources needed to progress the		PARTIAL	
proposal (Priority C)		0)////	
Additional training may be required if Class D was introduced to areas which do r would potentially require more resources than design options EGBB-3A or 3B.	lot currently use it i	.e. SWK upper al	Irspace sectors. This
Design principle 3: Environmental: Avoid low-level changes and reduce CO_2		PARTIAL	
emissions where possible (Priority B)			
The routes would provide a CO ₂ reduction for relevant EGBB traffic, which would	not change below 7	7,000ft.	
A new FL65 CAS base may cause some GA flights to reroute or fly lower than the	y do today.		
Design principle 4: Economic: Reduce flight plan mileage and associated fuel			MET
uplift/ burn (Priority C)			
The routes would provide a fuel burn benefit (cost saving).		•	
Design principle 5: Technical: Minimise negative impact on other airspace users		PARTIAL	
(Priority C)			
There would be a partial impact on GA and MoD users which would be managed	accordingly. Howe	ever the impact v	vould be less than for
design option EGBB-3A or 3B as VFR traffic would have access with a clearance,			
Airspace required would not be significantly reduced compared with concepts EG			
Design principle 6: Operational: Full ANSP agreement (Priority B)		PARTIAL	
Dependent on where this classification is used - Class D airspace is appropriate f	or lower airspace v	vhere it is alread	v used in the region, i.e.
around EGBB. It would provide increased tactical flexibility.	-1		,
However it is not currently used in SWK upper airspace and significant training w	ould be required (a	dditional VFR tra	ffic), unlike for design
option EGBB-3B. VFR traffic is not compatible with currently used trajectory-base			<i>,,</i>
This has been scored as 'PARTIAL' due to the unknown element of where this des		be implemented	ł.

20. EGBB-3D

Option Name: EGBB-3D	REJECT			
Description of option: All proposed new CAS volumes to be Class E				
Design principle 1: Operational: Increase in predictable flight planning for	NOT MET			
operators and ATC flexibility to better manage busy flows (Priority C)				
Provides predictable and optimal flight planning options for EGBB arrivals and dep		operators may n	not want to use Class E	
airspace due to perceived risks. This would not be an issue for design options EG				
ATC ability to manage busy bidirectional flows would be significantly compromise	ed due to lack of sy	stemisation, rec	quiring more tactical	
vectoring and an increased workload.	r			
Design principle 2: Operational: Minimise resources needed to progress the		PARTIAL		
proposal (Priority C)				
Additional training would be required if Class E was introduced to areas which do		t e.g. SWK upper	airspace sectors.	
This would potentially require more resources than for design options EGBB-3A o	r 3B.			
Design principle 3: Environmental: Avoid low-level changes and reduce CO_2		PARTIAL		
emissions where possible (Priority B)				
The routes would provide a CO2 reduction for relevant EGBB traffic, which would r		7,000ft.		
A new FL65 CAS base may cause some GA flights to reroute or fly lower than the	/ do today.			
Design principle 4: Economic: Reduce flight plan mileage and associated fuel		PARTIAL		
uplift/ burn (Priority C)				
The routes would provide a fuel burn benefit (cost saving) however airlines may n	ot choose to use tl	nem as much, di	ue to Class E airspace.	
This would not be an issue for design options EGBB-3A, 3B or 3C.				
Design principle 5: Technical: Minimise negative impact on other airspace users		PARTIAL		
(Priority C)				
Class E airspace would mitigate GA community concern, however it would likely in				
impact would be less than for design option EGBB-3A as VFR traffic would have a	ccess without a cl	earance required	d, rather than no	
access.				
Airspace required would not be significantly reduced compared with concepts EG				
Design principle 6: Operational: Full ANSP agreement (Priority B)	NOT MET			
Class E airspace is not currently used in SWK airspace, therefore significant retrai				
VFR traffic is not compatible with currently used trajectory-based controller tools. Class E airspace would also introduce a new controller				
workload burden. This level of impact is not acceptable to NATS; therefore this Design Principle is not met.				

21. EGBB-3E

Option Name: EGBB-3E			REJECT
Description of option: New routes and CAS to be established H24/ 365; with approp	oriate clawback arr	angements	
Design principle 1: Operational: Increase in predictable flight planning for	NOT MET		
operators and ATC flexibility to better manage busy flows (Priority C)			
Provides predictable and optimal flight planning options for EGBB arrivals and de bidirectional flows would be significantly compromised due to lack of systemisat workload.			
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)			MET
No additional training or manning requirements due to this timing.			
Design principle 3: Environmental: Avoid low-level changes and reduce CO_2 emissions where possible (Priority B)		PARTIAL	
The routes would provide a CO_2 reduction for relevant EGBB traffic, which would A new FL65 CAS base may cause some GA flights to reroute or fly lower than the		7,000ft.	
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)			MET
The routes would provide the maximum possible fuel burn benefit (cost saving).			
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)	NOT MET		
H24 operations would cause a large impact to MoD and GA airspace users. The be considered as unacceptable when compared to design options EGBB-3F or 30		ers have indicat	ed that this is likely to
Design principle 6: Operational: Full ANSP agreement (Priority B)	NOT MET		
Maximum usage and tactical flexibility for SWK and Birmingham Radar. Howeve stated that they would not support H24.	r this does not me	et this Design Pi	rinciple as the MoD has

22. EGBB-3F

Option Name: EGBB-3F			REJECT
Description of option: New routes and CAS to be established evenings/ overnights/	mornings, 7 days a	week; with appr	opriate clawback
arrangements			
Design principle 1: Operational: Increase in predictable flight planning for	NOT MET		
operators and ATC flexibility to better manage busy flows (Priority C)			
Provides predictable and optimal flight planning options for EGBB arrivals and dep			
However ATC ability to manage busy bidirectional flows would be significantly co tactical vectoring and an increased workload.	mpromised due to l	ack of systemis	sation, requiring more
Design principle 2: Operational: Minimise resources needed to progress the			MET
proposal (Priority C)			
No additional training or manning requirements due to FUA timings, however acti	vation/deactivation	requires resour	ce to manage.
Design principle 3: Environmental: Avoid low-level changes and reduce CO_2		PARTIAL	
emissions where possible (Priority B)			
The routes would provide a CO ₂ reduction for these time periods for relevant EGB		Ild not change b	elow 7,000ft.
A new FL65 CAS base may cause some GA flights to reroute or fly lower than the	y do today.		
Design principle 4: Economic: Reduce flight plan mileage and associated fuel			MET
uplift/ burn (Priority C)			
The routes would provide a fuel burn benefit (cost saving) but less often than for	design options EGB	B-3E or 3G.	
Design principle 5: Technical: Minimise negative impact on other airspace users		PARTIAL	
(Priority C)			
Timings would cause a partial impact to MoD and GA airspace users, outside the	r typical core daytir	ne operating ho	urs. This would be to
a lesser extent than for design option EGBB-3E.			
Design principle 6: Operational: Full ANSP agreement (Priority B)		PARTIAL	
Slightly limited usage and tactical flexibility for Birmingham Radar/ TC MIDS. The	MoD has indicated	I that they would	d support this design
concept, unlike design option EGBB-3E.			

23. EGBB-3G

Option Name: EGBB-3G			REJECT
Description of option: New routes and CAS to be established evenings/ overnights/	mornings during th	ne week, and H24	4 at weekends; with
appropriate clawback arrangements			•
Design principle 1: Operational: Increase in predictable flight planning for	NOT MET		
operators and ATC flexibility to better manage busy flows (Priority C)			
Provides predictable and optimal flight planning options for EGBB arrivals and dep	partures, mimicking	g current ATSOC	AS availability
However ATC ability to manage busy bidirectional flows would be significantly co	mpromised due to	lack of systemis	sation, requiring more
tactical vectoring and an increased workload. Not available 24/7.			
Design principle 2: Operational: Minimise resources needed to progress the			MET
proposal (Priority C)			
No additional training or manning requirements due to FUA timings, however activ	vation/deactivatior	n requires resour	ce to manage.
Design principle 3: Environmental: Avoid low-level changes and reduce CO_2		PARTIAL	
emissions where possible (Priority B)			
The routes would provide a CO ₂ reduction for these time periods for relevant EGB		uld not change b	elow 7,000ft.
A new FL65 CAS base may cause some GA flights to reroute or fly lower than they	/ do today.		
Design principle 4: Economic: Reduce flight plan mileage and associated fuel			MET
uplift/ burn (Priority C)			
The routes would provide a fuel burn benefit (cost saving) more often than EGBB-	3F.		
Design principle 5: Technical: Minimise negative impact on other airspace users		PARTIAL	
(Priority C)			
The timings would cause a partial impact to MoD and GA airspace users (less tha	n EGBB-3F), outsic	le MoD core wee	ekday/ daytime hours
but potentially impacting GA at weekends. This would be to a lesser extent than f	or design option E	GBB-3E.	
Design principle 6: Operational: Full ANSP agreement (Priority B)		PARTIAL	
Slightly limited usage and tactical flexibility for Birmingham Radar/ TC MIDS (mor	e flexibility than EC	BB-3F but also	more potential GA
impact). The MoD has indicated that they are more likely to support this design, u	Inlike design option	n EGBB-3E.	

EGLL Concept Options

The following seven options are all variations of the same design concept. This design concept contains unidirectional eastbound OCK offload route(s) for EGLL arrivals. Two separate blocks of CAS with different base levels and an en-route contingency hold would also be introduced.

24. EGLL-1A

Option Name: EGLL-1A		REJECT		
Description of option: All proposed new CAS volumes to be Class A				
Design principle 1: Operational: Increase in predictable flight planning for		MET		
operators and ATC flexibility to better manage busy flows (Priority C)				
The offload concept would provide flightplannable options for the tactical balanci consideration of the desired descent profile.	ing of flows with vectoring fl	exibility and adequate		
Design principle 2: Operational: Minimise resources needed to progress the		MET		
proposal (Priority C)				
Class A CAS would cause no particular impact on resources.				
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂		MET		
emissions where possible (Priority B)				
The routes would provide a CO ₂ reduction for relevant EGLL arrivals. They would not change below 7,000ft due to a limiting mechanism				
which would ensure the flow balance does not exceed the equivalent of today's st	tack swap numbers.			
Design principle 4: Economic: Reduce flight plan mileage and associated fuel		MET		
uplift/ burn (Priority C)				
The proposed route is shorter than the equivalent flightplannable route within UK saving) depending on oceanic exit point location.	airspace, and can therefore	enable a fuel saving (cost		
Design principle 5: Technical: Minimise negative impact on other airspace users	NOT MET			
(Priority C)				
Extensive Class A airspace would negatively impact and inhibit GA users to an ext				
traffic. Design options EGLL-1B, 1C or 1D would allow VFR access to varying exte	ents, hence EGLL-1A not me	eting this Design Principle.		
Design principle 6: Operational: Full ANSP agreement (Priority B)	NOT MET			
NATS does not intend to propose the introduction of additional low level Class A (CAS in this region.			

25. EGLL-1B

Option Name: EGLL-1B		ACCEPT	and PROGRESS		
Description of option: All proposed new CAS volumes to be Class C					
Design principle 1: Operational: Increase in predictable flight planning for operators and ATC flexibility to better manage busy flows (Priority C)			MET		
The offload concept would provide flightplannable options for the tactical balanci consideration of the desired descent profile.	ng of flows with ve	ectoring flexibility	/ and adequate		
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)			MET		
Class C does not change the resource requirements compared to EGLL-1A.					
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂ emissions where possible (Priority B)			MET		
The routes would provide a CO ₂ reduction for relevant EGLL arrivals. They would not change below 7,000ft due to a limiting mechanism which would ensure the flow balance does not exceed the equivalent of today's stack swap numbers.					
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)			MET		
The proposed route is shorter than the equivalent flightplannable route within UK airspace, and can therefore enable a fuel saving (cost saving) depending on oceanic exit point location.					
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)		PARTIAL			
The lateral design is simple. There would likely be an impact on MoD operations routing OAT; this would be coordinated accordingly. However the impact would be would have limited access, rather than no access.			,		
Design principle 6: Operational: Full ANSP agreement (Priority B)			MET		
Dependent on where this classification is used - Class C airspace is appropriate f Reduction in workload and ATC complexity for NATS (NERL). No new training wo					

26. EGLL-1C

Option Name: EGLL-1C		REJECT		
Description of option: All proposed new CAS volumes to be Class D				
Design principle 1: Operational: Increase in predictable flight planning for		MET		
operators and ATC flexibility to better manage busy flows (Priority C)				
The offload concept would provide flightplannable options for the tactical balancial consideration of the desired descent profile.	ng of flows with vectoring flexi	bility and adequate		
Design principle 2: Operational: Minimise resources needed to progress the	PARTIAL			
proposal (Priority C)				
Additional training would be required if Class D was introduced to areas which do would potentially require more resources than for design options EGLL-1A or 1B.	not currently use it i.e. SWK up	oper airspace sectors. This		
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂		MET		
emissions where possible (Priority B)				
The routes would provide a CO ₂ reduction for relevant EGLL arrivals. They would which would ensure the flow balance does not exceed the equivalent of today's st		to a limiting mechanism		
Design principle 4: Economic: Reduce flight plan mileage and associated fuel		MET		
uplift/ burn (Priority C)				
The proposed route is shorter than the equivalent flightplannable route within UK	airspace, and can therefore en	able a fuel saving (cost		
saving) depending on oceanic exit point location.				
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)	PARTIAL			
The lateral design is simple. There would likely be an impact on MoD operations w	within this area, such as northb	bound military traffic		
routing OAT; this would be coordinated accordingly. However the impact would b	e less than for design option E	GLL-1A or 1B as VFR		
traffic would have access with a clearance, rather than limited or no access.				
Design principle 6: Operational: Full ANSP agreement (Priority B)	NOT MET			
Class D is not currently used in SWK upper airspace by NATS (NERL) and significate EGLL-1B.	ant training would be required,	unlike for design option		
VFR traffic is not compatible with current trajectory-based controller tools.				

27. EGLL-1D

Option Name: EGLL-1D	REJECT				
Description of option: All proposed new CAS volumes to be Class E					
Design principle 1: Operational: Increase in predictable flight planning for	PARTIAL				
operators and ATC flexibility to better manage busy flows (Priority C)					
The offload concept would provide flightplannable options for the tactical balanci					
descent profile. However operators may not want to use Class E airspace due to p	perceived risks. This would not be an issue for design				
options EGLL-1A, 1B or 1C.					
Design principle 2: Operational: Minimise resources needed to progress the	PARTIAL				
proposal (Priority C)					
Additional training would be required if Class E was introduced to areas which do	not currently use it i.e. SWK upper airspace sectors. This				
would potentially require more resources than for design options EGLL-1A or 1B. Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂	MET				
emissions where possible (Priority B) (200)	IVIE I				
The routes would provide a CO_2 reduction for relevant EGLL arrivals. They would a	not change below 7,000ft due to a limiting mechanism				
which would ensure the flow balance does not exceed the equivalent of today's st					
Design principle 4: Economic: Reduce flight plan mileage and associated fuel	PARTIAL				
uplift/ burn (Priority C)					
The proposed route is shorter than the equivalent flightplannable route within UK	airspace, and can therefore enable a fuel saving (cost				
saving) depending on oceanic exit point location. However airlines may not choos					
not be an issue for design options EGLL-1A, 1B or 1C.					
Design principle 5: Technical: Minimise negative impact on other airspace users	PARTIAL				
(Priority C)					
The lateral design is simple. There would likely be an impact on MoD operations w					
routing OAT; this would be coordinated accordingly. However the impact would b	e less than for design option EGLL-1A as VFR traffic				
would have access without a clearance required, rather than no access.					
Design principle 6: Operational: Full ANSP agreement (Priority B)	NOT MET				
Class E airspace is not currently used in SWK airspace by NATS (NERL); therefore	e significant retraining would be required, unlike for design				
option EGLL-1B. VFR traffic is not compatible with current trajectory-based contro	oller tools. Class E airspace would also introduce a new				
controller workload burden. This level of impact is not acceptable to NATS; theref	fore this Design Principle is not met.				

28. EGLL-1E

Option Name: EGLL-1E			REJECT	
Description of option: CDR1 route status for the unidirectional offload route(s)				
Design principle 1: Operational: Increase in predictable flight planning for operators and ATC flexibility to better manage busy flows (Priority C)	NOT MET			
Although this concept would provide flightplannable options for aircraft operators – part of this DP – it would not allow for any tactical balancing of flows by ATC and would be quite inflexible. A CDR1 status does not provide the great tactical flexibility that this offload route requires. Our reservations on the application of pure-CDR1 status for this offload route are so strong that we conclude that it does not meet this DP. EGLL-1F and EGLL-1G meet this DP to greater extents due to their greater tactical flexibility.				
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)		PARTIAL		
A CDR1 route would be flightplannable during its hours of operation which could p offload route than are stack-swapped today. Whereas we do not intend to increase				
This concept therefore has the potential to require a sector split and increased AT	C manning due to	the CDR1 (flight	plannable) status;	
unlike for design option EGLL-1G which would not.				
Design principle 3: Environmental: Avoid low-level changes and reduce CO_2 emissions where possible (Priority B)			MET	
The routes would provide a CO ₂ reduction for relevant EGLL arrivals. They would which would ensure the number of flights using the route does not exceed the eq				
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)			MET	
The proposed route is shorter than the equivalent flightplannable route within UK saving) depending on oceanic exit point location.	airspace, and can	therefore enable	a fuel saving (cost	
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)		PARTIAL		
There would likely be an impact on MoD operations within this area, such as northbound military traffic routing OAT; this would be coordinated accordingly.				
Design principle 6: Operational: Full ANSP agreement (Priority B)			MET	
NATS (NERL) and the MoD would support this design concept. It would provide a (NERL).	reduction in work	load and ATC co	mplexity for NATS	

29. EGLL-1F

Option Name: EGLL-1F	ACCEPT and PROGRESS				
Description of option: CDR1/3 route status for the unidirectional offload route(s)					
Design principle 1: Operational: Increase in predictable flight planning for	MET				
operators and ATC flexibility to better manage busy flows (Priority C)					
This concept would provide flightplannable options for aircraft operators, and wou					
therefore have no reservations over using this design concept for an offload route					
Design principle 2: Operational: Minimise resources needed to progress the	PARTIAL				
proposal (Priority C)					
A CDR1 route would be flightplannable during its hours of operation which could p					
offload route than are stack-swapped today. Whereas we do not intend to increas					
This concept therefore has the potential to require a sector split and increased AT	IC manning due to the CDR1 (flightplannable) status;				
unlike for design option EGLL-1G which would not.					
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂	MET				
emissions where possible (Priority B)					
The routes would provide a CO_2 reduction for relevant EGLL arrivals. They would n					
which would ensure the number of flights using the route does not exceed the equ	uivalent of today's stack swap numbers.				
Design principle 4: Economic: Reduce flight plan mileage and associated fuel	MET				
uplift/ burn (Priority C)					
The proposed route is shorter than the equivalent flightplannable route within UK a	airspace, and can therefore enable a fuel saving (cost				
saving) depending on oceanic exit point location.					
Design principle 5: Technical: Minimise negative impact on other airspace	PARTIAL				
users (Priority C)					
There would likely be an impact on MoD operations within this area, such as north	nbound military traffic routing OAT; this would be				
coordinated accordingly.					
Design principle 6: Operational: Full ANSP agreement (Priority B)	MET				
NATS (NERL) and the MoD would support this design concept. It matches similar	r CDRs crossing the NWMTA.				

30. EGLL-1G

Option Name: EGLL-1G	ACCEPT and PROGRES	SS			
Description of option: CDR3 route status for the unidirectional offload route(s)					
Design principle 1: Operational: Increase in predictable flight planning for	PARTIAL				
operators and ATC flexibility to better manage busy flows (Priority C)					
CDR3 routes are not available for flight planning; they might require airline operate	ators to fuel for alternative routes than those potentially				
available, should the offload be needed.					
However this concept would provide predictable flexibility for ATC to be able to of		S			
over using this design concept for an offload route, due to this increased flexibility	ity, than EGLL-1E.				
Design principle 2: Operational: Minimise resources needed to progress the	MET				
proposal (Priority C)					
This option will only be used when the need arises; therefore no particular additio	ional resource is required; unlike for design options EGLL-	·1E			
or 1G.					
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂	MET				
emissions where possible (Priority B)					
The routes would provide a CO_2 reduction for relevant EGLL arrivals. They would					
which would ensure the flow balance does not exceed the equivalent of today's s					
Design principle 4: Economic: Reduce flight plan mileage and associated fuel	PARTIAL				
uplift/ burn (Priority C)					
This would not reduce flightplan mileage due to its tactical nature, unlike for design	sign options EGLL-TE or TF. However, actual fuel burn ma	зу			
be reduced (cost benefit).					
Design principle 5: Technical: Minimise negative impact on other airspace users	s PARTIAL				
(Priority C)					
There would likely be an impact on MoD operations within this area, such as north	rtnbound military traffic routing UAI; this would be				
coordinated accordingly.					
Design principle 6: Operational: Full ANSP agreement (Priority B)	MET				
NATS (NERL) and the MoD would support this design concept. It would provide N	NATS (NERL) with additional flexibility.				

The following seven options are all variations of the same design concept. This design concept contains the same indicative unidirectional OCK offload route(s) and en-route contingency hold for EGLL arrivals as the first EGLL design sub-options; EGLL-1A – EGLL-1G. There would be a single block of CAS, rather than two, with a base of FL145.

31. EGLL-2A

Option Name: EGLL-2A			REJECT	
Description of option: All proposed new CAS volumes to be Class A				
Design principle 1: Operational: Increase in predictable flight planning for			MET	
operators and ATC flexibility to better manage busy flows (Priority C)				
The offload concept would provide flightplannable options for the tactical balanci	ng of flows with ve	ectoring flexibility	/ and adequate	
consideration of the desired descent profile.				
Design principle 2: Operational: Minimise resources needed to progress the			MET	
proposal (Priority C)				
Class A CAS would cause no particular impact on resources.				
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂			MET	
emissions where possible (Priority B)				
The routes would provide a CO ₂ reduction for relevant EGLL arrivals. They would			limiting mechanism	
which would ensure the flow balance does not exceed the equivalent of today's st	tack swap number	S.		
Design principle 4: Economic: Reduce flight plan mileage and associated fuel			MET	
uplift/ burn (Priority C)				
The proposed route is shorter than the equivalent flightplannable route within UK	airspace, and can	therefore enable	a fuel saving (cost	
saving) depending on oceanic exit point location.				
Design principle 5: Technical: Minimise negative impact on other airspace users	NOT MET			
(Priority C)				
The lateral design is simple.				
However, extensive Class A airspace would negatively impact and inhibit GA user	s to an extent whic	ch is likely to be ι	inacceptable, as it	
excludes VFR traffic. Design options EGLL-2B, 2C or 2D would allow VFR access	to varying extents,	hence EGLL-2A	not meeting this	
Design Principle.				
Design principle 6: Operational: Full ANSP agreement (Priority B)	NOT MET			
NATS does not intend to propose the introduction of additional low level Class A	CAS in this region.		·	

32. EGLL-2B

Option Name: EGLL-2B		ACCEPT	and PROGRESS	
Description of option: All proposed new CAS volumes to be Class C				
Design principle 1: Operational: Increase in predictable flight planning for operators and ATC flexibility to better manage busy flows (Priority C)			MET	
The offload concept would provide flightplannable options for the tactical balanci consideration of the desired descent profile.	ng of flows with ve	ectoring flexibility	y and adequate	
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)			MET	
Class C does not change the resource requirements compared to EGLL-2A.				
Design principle 3: Environmental: Avoid low-level changes and reduce CO_2 emissions where possible (Priority B)			MET	
The routes would provide a CO ₂ reduction for relevant EGLL arrivals. They would not change below 7,000ft due to a limiting mechanism which would ensure the flow balance does not exceed the equivalent of today's stack swap numbers.				
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)			MET	
The proposed route is shorter than the equivalent flightplannable route within UK saving) depending on oceanic exit point location.	airspace, and can t	herefore enable	a fuel saving (cost	
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)		PARTIAL		
The lateral design is simple. There would likely be an impact on MoD operations within this area, such as northbound military traffic routing OAT; this would be coordinated accordingly. However the impact would be less than for design option EGLL-2A as VFR traffic would have limited access, rather than no access. Impacts would be slightly greater due to the extent of the lower base compared to Concept EGLL-1.				
Design principle 6: Operational: Full ANSP agreement (Priority B)			MET	
Dependent on where this classification is used - Class C airspace is appropriate for SWK upper airspace and is currently well used. Reduction in workload and ATC complexity for NATS (NERL). No new training would be required, unlike for design options EGLL-2C or 2D.				

33. EGLL-2C

Option Name: EGLL-2C			REJECT
Description of option: All proposed new CAS volumes to be Class D			
Design principle 1: Operational: Increase in predictable flight planning for			MET
operators and ATC flexibility to better manage busy flows (Priority C)			
The offload concept would provide flightplannable options for the tactical balanc consideration of the desired descent profile.	ng of flows with v	ectoring flexibilit	y and adequate
Design principle 2: Operational: Minimise resources needed to progress the		PARTIAL	
proposal (Priority C)			
Additional training would be required if Class D was introduced to areas which do	not currently use	it i.e. SWK upper	airspace sectors. This
would potentially require more resources than design options EGLL-2A or 2B.	2		
Design principle 3: Environmental: Avoid low-level changes and reduce CO_2			MET
emissions where possible (Priority B)			
The routes would provide a CO2 reduction for relevant EGLL arrivals. They would	not change below	7,000ft due to a	limiting mechanism
which would ensure the flow balance does not exceed the equivalent of today's s	tack swap number	S.	
Design principle 4: Economic: Reduce flight plan mileage and associated fuel			MET
uplift/ burn (Priority C)			
The proposed route is shorter than the equivalent flightplannable route within UK saving) depending on oceanic exit point location.	airspace, and can	therefore enable	e a fuel saving (cost
Design principle 5: Technical: Minimise negative impact on other airspace users		PARTIAL	
(Priority C)			
The lateral design is simple. There would likely be an impact on MoD operations	within this area, su	ich as northbour	nd military traffic
routing OAT; this would be coordinated accordingly. However the impact would I	e less than for de	sign option EGLL	-2A or 2B as VFR
traffic would have access with a clearance, rather than limited or no access.			
Impacts would be slightly greater due to the extent of the lower base compared t	o Concept EGLL-1		
Design principle 6: Operational: Full ANSP agreement (Priority B)	NOT MET		
Class D is not currently used in SWK upper airspace by NATS (NERL) and signific	ant training would	be required, unli	ke for design option
EGLL-2B.	-		
VFR traffic is not compatible with current trajectory-based controller tools.			

34. EGLL-2D Option – Design Principle Evaluation

Option Name: EGLL-2D	REJECT		
Description of option: All proposed new CAS volumes to be Class E			
Design principle 1: Operational: Increase in predictable flight planning for	PARTIAL		
operators and ATC flexibility to better manage busy flows (Priority C)			
The offload concept would provide flightplannable options for the tactical balanci			
descent profile. However operators may not want to use Class E airspace due to p	perceived risks. This would not be an issue for design		
options EGLL-2A, 2B or 2C.			
Design principle 2: Operational: Minimise resources needed to progress the	PARTIAL		
proposal (Priority C)			
Additional training would be required if Class E was introduced to areas which do	not currently use it i.e. SWK upper airspace sectors. This		
would potentially require more resources than for design options EGLL-2A or 2B.			
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂	MET		
emissions where possible (Priority B)			
The routes would provide a CO ₂ reduction for relevant EGLL arrivals. They would not change below 7,000ft due to a limiting mechanism			
which would ensure the flow balance does not exceed the equivalent of today's st Design principle 4: Economic: Reduce flight plan mileage and associated fuel	PARTIAL		
uplift/ burn (Priority C)	PARTIAL		
The proposed route is shorter than the equivalent flightplannable route within UK a	airspace and can therefore enable a fuel saving (cost		
saving) depending on oceanic exit point location. However airlines may not choos			
not be an issue for design options EGLL-2A, 2B or 2C.	e to use them due to the oldss E dispude. This would		
Design principle 5: Technical: Minimise negative impact on other airspace users	PARTIAL		
(Priority C)			
The lateral design is simple. There would likely be an impact on MoD operations w	within this area, such as northbound military traffic		
routing OAT; this would be coordinated accordingly. However the impact would b	e less than for design option EGLL-2A as VFR traffic		
would have access without a clearance required, rather than no access.			
Impacts would be slightly greater due to the extent of the lower base compared to	Concept EGLL-1.		
Design principle 6: Operational: Full ANSP agreement (Priority B)	NOT MET		
Class E airspace is not currently used in SWK airspace, therefore significant retraining would be required, unlike for design option EGLL-2B.			
VFR traffic is not compatible with current trajectory-based controller tools. Class			
workload burden. This level of impact is not acceptable to NATS; therefore this De	esign Principle is not met.		

35. EGLL-2E

Option Name: EGLL-2E	REJECT		
Description of option: CDR1 route status for the unidirectional offload route(s)			
Design principle 1: Operational: Increase in predictable flight planning for	NOT MET		
operators and ATC flexibility to better manage busy flows (Priority C)			
Although this concept would provide flightplannable options for aircraft operator			
balancing of flows by ATC and would be quite inflexible. A CDR1 status does no			
requires. Our reservations on the application of pure-CDR1 status for this offloa			de that it does not
meet this DP. EGLL-2F and EGLL-2G meet this DP to greater extents due to their	greater tactical fle		1
Design principle 2: Operational: Minimise resources needed to progress the		PARTIAL	
proposal (Priority C)		· · · · · · · · · · · · · · · · · · ·	
A CDR1 route would be flightplannable during its hours of operation which could			
offload route than are stack-swapped today. Whereas we do not intend to increa			
This concept therefore has the potential to require a sector split and increased A	I C manning due to	the CDR I (flight	plannable) status;
unlike for design option EGLL-2G which would not.	-		
Design principle 3: Environmental: Avoid low-level changes and reduce CO_2			MET
emissions where possible (Priority B) The routes would provide a CO_2 reduction for relevant EGLL arrivals. They would	l not obongo bolow	7 000ft due te e	limiting machaniam
which would ensure the number of flights using the route does not exceed the e			
Design principle 4: Economic: Reduce flight plan mileage and associated fuel	ulvalent of today s	Stack Swap hun	MET
uplift/ burn (Priority C)			
The proposed route is shorter than the equivalent flightplannable route within Uk	aircpace and can	thoroforo onabla	a fuel caving (cost
saving) depending on oceanic exit point location.	an space, and can		a luei saviliy (cost
Design principle 5: Technical: Minimise negative impact on other airspace users		PARTIAL	
(Priority C)			
There would likely be an impact on MoD operations within this area, such as nor	hbound military tra	ffic routing OAT;	this would be
coordinated accordingly.	,	0	
Impacts would be slightly greater due to the extent of the lower base compared	o Concept EGLL-1.		
Design principle 6: Operational: Full ANSP agreement (Priority B)			MET
NATS (NERL) and the MoD would support this design concept. It would provide (NERL).	a reduction in work	load and ATC co	mplexity for NATS

36. EGLL-2F

Option Name: EGLL-2F		ACCEPT	and PROGRESS
Description of option: CDR1/3 route status for the unidirectional offload route(s)			
Design principle 1: Operational: Increase in predictable flight planning for			MET
operators and ATC flexibility to better manage busy flows (Priority C)			
This concept would provide flightplannable options for aircraft operators, and wou		al balancing of fl	ows by ATC. We
therefore have no reservations over using this design concept for an offload route			
Design principle 2: Operational: Minimise resources needed to progress the		PARTIAL	
proposal (Priority C)			
A CDR1 route would be flightplannable during its hours of operation which could p			
offload route than are stack-swapped today. Whereas we do not intend to increas			
This concept therefore has the potential to require a sector split and increased AT	C manning due to	the CDR1 (flight	plannable) status;
unlike for design option EGLL-2G which would not.			
Design principle 3: Environmental: Avoid low-level changes and reduce CO_2			MET
emissions where possible (Priority B)			
The routes would provide a CO ₂ reduction for relevant EGLL arrivals. They would not change below 7,000ft due to a limiting mechanism			
which would ensure the number of flights using the route does not exceed the equ	uvalent of today's	stack swap num	
Design principle 4: Economic: Reduce flight plan mileage and associated fuel			MET
uplift/ burn (Priority C)			
The proposed route is shorter than the equivalent flightplannable route within UK airspace, and can therefore enable a fuel saving (cost			
saving) depending on oceanic exit point location.		DADTIAL	
Design principle 5: Technical: Minimise negative impact on other airspace		PARTIAL	
users (Priority C)		iii oat	
There would likely be an impact on MoD operations within this area, such as north	bound military traf	fic routing OAT;	this would be
coordinated accordingly.			
Impacts would be slightly greater due to the extent of the lower base compared to	Concept EGLL-1.		
Design principle 6: Operational: Full ANSP agreement (Priority B)			MET
NATS (NERL) and the MoD would support this design concept. It matches similar	CDRs crossing the	e NWMTA.	

37. EGLL-2G Option – Design Principle Evaluation

Option Name: EGLL-2G		ACCEPT	and PROGRESS
Description of option: CDR3 route status for the unidirectional offload route(s)			
Design principle 1: Operational: Increase in predictable flight planning for		PARTIAL	
operators and ATC flexibility to better manage busy flows (Priority C)			
CDR3 routes are not available for flight planning; they might require airline operat available, should the offload be needed.	ors to fuel for altern	native routes tha	an those potentially
However this concept would provide predictable flexibility for ATC to be able to of		required. We ha	ive few reservations
over using this design concept for an offload route, due to this increased flexibility	y, than EGLL-2E.		
Design principle 2: Operational: Minimise resources needed to progress the			MET
proposal (Priority C)			
This option will only be used when the need arises; therefore no particular additio or 2G.	nal resource is requ	uired; unlike for a	design options EGLL-2E
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂			MET
emissions where possible (Priority B)			
The routes would provide a CO ₂ reduction for relevant EGLL arrivals. They would not change below 7,000ft due to a limiting mechanism			
which would ensure the flow balance does not exceed the equivalent of today's s	tack swap numbers	S.	
Design principle 4: Economic: Reduce flight plan mileage and associated fuel		PARTIAL	
uplift/ burn (Priority C)			
This would not reduce flightplan mileage due to its tactical nature, unlike for design	gn options EGLL-2E	Eor 2F. Howeve	r, actual fuel burn may
be reduced (cost benefit).			
Design principle 5: Technical: Minimise negative impact on other airspace users		PARTIAL	
(Priority C)			
There would likely be an impact on MoD operations within this area, such as north	hound military trai	ffic routing OAT;	this would be
coordinated accordingly.			
Impacts would be slightly greater due to the extent of the lower base compared to	o Concept EGLL-1.		
Design principle 6: Operational: Full ANSP agreement (Priority B)			MET
NATS (NERL) and the MoD would support this design concept. It would provide N	NATS (NERL) with a	additional flexibi	lity.

The following three options are all variations of the same design concept, where no new CAS would be required. Compared with concepts EGLL-1 and EGLL-2, it considers a more northerly orientation of an indicative unidirectional OCK offload route, with no en-route contingency hold.

38. EGLL-3A

Option Name: EGLL-3A			REJECT
Description of option: CDR1 route status for the unidirectional offload route(s)			
Design principle 1: Operational: Increase in predictable flight planning for operators and ATC flexibility to better manage busy flows (Priority C)	NOT MET		
This concept would provide flightplannable options for aircraft operators. Howe ATC and would be inflexible.	ver it would not allow	v for the tactical	balancing of flows by
Above all, the inability to descend means the traffic must join the existing flow f likelihood of conflictions with existing north-south traffic flows such as EGCC so being met.			
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)	NOT MET		
The sector flow would change from Sector 35 – AC Sector 5 – TC COWLY, to Sector 5 – TC COWLY, to Sector sector boundaries and ATC pro- requirement than option concepts EGLL-1 or EGLL-2.			TCO training
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂ emissions where possible (Priority B)			MET
The routes would provide a CO_2 reduction for relevant EGLL arrivals. They woul which would ensure the number of flights using the route does not exceed the e			
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)			MET
The proposed route is shorter than the equivalent flightplannable route within U saving) depending on oceanic exit point location.	K airspace, and can t	herefore enable	a fuel saving (cost
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)		PARTIAL	
There would still likely be an impact on MoD operations within this area, such as coordinated accordingly.	s northbound military	rtraffic routing (DAT; this would be
Design principle 6: Operational: Full ANSP agreement (Priority B)	NOT MET		
NATS does not agree to this suggestion due to the excessive operational impact	t and lack of flexibilit	ty.	

39. EGLL-3B

Option Name: EGLL-3B	REJECT		
Description of option: CDR1/3 route status for the unidirectional offload route(s)			
Design principle 1: Operational: Increase in predictable flight planning for	NOT MET		
operators and ATC flexibility to better manage busy flows (Priority C)			
This concept would provide flightplannable options for aircraft operators, and wou			
Above all, the inability to descend means the traffic must join the existing flow fur	ther north than EGI	L-1 or EGLL-2, i	ncreasing the
likelihood of conflictions with existing north-south traffic flows such as EGCC sou	thbound departure	s. Hence this De	esign Principle not
being met.			
Design principle 2: Operational: Minimise resources needed to progress the	NOT MET		
proposal (Priority C)			
The sector flow would change from Sector 35 – AC Sector 5 – TC COWLY, to Sec			
This could require significant changes to current sector boundaries and ATC proc	edures, leading to a	a much larger A ⁻	TCO training
requirement than option concepts EGLL-1 or EGLL-2.			
Design principle 3: Environmental: Avoid low-level changes and reduce CO_2			MET
emissions where possible (Priority B)			
The routes would provide a CO ₂ reduction for relevant EGLL arrivals. They would			limiting mechanism
which would ensure the flow balance does not exceed the equivalent of today's st	ack swap numbers	S.	
Design principle 4: Economic: Reduce flight plan mileage and associated fuel			MET
uplift/ burn (Priority C)			
The proposed route is shorter than the equivalent flightplannable route within UK	airspace, and can t	herefore enable	a fuel saving (cost
saving) depending on oceanic exit point location.	-		
Design principle 5: Technical: Minimise negative impact on other airspace users		PARTIAL	
(Priority C)			
There would still likely be an impact on MoD operations within this area, such as r	orthbound military	traffic routing C	AT; this would be
coordinated accordingly.			
Design principle 6: Operational: Full ANSP agreement (Priority B)	NOT MET		
NATS does not agree to this suggestion due to the excessive operational impact a	and lack of flexibilit	y.	

40. EGLL-3C Option

Option Name: EGLL-3C			REJECT
Description of option: CDR3 route status for the unidirectional offload route(s)			
Design principle 1: Operational: Increase in predictable flight planning for	NOT MET		
operators and ATC flexibility to better manage busy flows (Priority C)			
Although this design concept would provide predictable flexibility for ATC, CDR3 re		able for flight pla	anning and might
require airline operators to fuel for alternative routes than those potentially available			
Above all, the inability to descend means the traffic must join the existing flow fur			
likelihood of conflictions with existing north-south traffic flows such as EGCC sou	thbound departure	s. Hence this De	esign Principle not
being met.			1
Design principle 2: Operational: Minimise resources needed to progress the	NOT MET		
proposal (Priority C)			
The sector flow would change from Sector 35 – AC Sector 5 – TC COWLY, to Sec			
This could require significant changes to current sector boundaries and ATC proc	edures, leading to	a much larger A	TCO training
requirement than option concepts EGLL-1 or EGLL-2.		r	
Design principle 3: Environmental: Avoid low-level changes and reduce CO_2			MET
emissions where possible (Priority B)			
The routes would provide a CO ₂ reduction for relevant EGLL arrivals. They would			limiting mechanism
which would ensure the flow balance does not exceed the equivalent of today's st	ack swap numbers		
Design principle 4: Economic: Reduce flight plan mileage and associated fuel		PARTIAL	
uplift/ burn (Priority C)			
This would not reduce flightplan mileage due to the tactical nature, unlike design of	options EGLL-3A o	r 3B. However, a	ictual fuel burn may be
reduced (cost benefit).			
Design principle 5: Technical: Minimise negative impact on other airspace users		PARTIAL	
(Priority C)			
There would still likely be an impact on MoD operations within this area, such as northbound military traffic routing OAT; this would be			
coordinated accordingly.			
Design principle 6: Operational: Full ANSP agreement (Priority B)	NOT MET		
NATS does not agree to this suggestion due to the excessive operational impact a	and lack of flexibilit	tv.	

ATS Routes

SAIP AD5 is proposing to improve a number of ATS routes within the sectors specific to this proposal by shortening the flightplan track mileage. Some of the proposed changes formalise today's common tactical behaviour, known as a tactical-direct. Some mimic trajectories expected to be seen in Free Route Airspace, and others remove unnecessary restrictions on existing routes.

The design options for the ATS route segments are being considered as either "do-nothing" or "implement some or all of the proposed routes".

This is due to the potential permutations of components under consideration, requiring a disproportionate combination of analyses should each be considered individually against all others and a baseline do-nothing. We contend that this is reasonable at this stage, as it avoids unnecessary duplication of table 42 below (which would be the same for each ATS route component).

All ATS Routes are as described in the Stage 2 Step 2A(i) Airspace Design Options document.

41. Do not implement ATS Routes (do nothing)

Option Name: Do not implement ATS Routes			REJECT
Design principle 1: Operational: Increase in predictable flight planning for	NOT MET		
operators and ATC flexibility to better manage busy flows (Priority C)			
No improvement from today's operation, no additional flexibility.			
Design principle 2: Operational: Minimise resources needed to progress the		PARTIAL	
proposal (Priority C)			
No resources required.			
Design principle 3: Environmental: Avoid low-level changes and reduce CO_2		PARTIAL	
emissions where possible (Priority B)			
No change to existing arrangements,			
Design principle 4: Economic: Reduce flight plan mileage and associated fuel		PARTIAL	
uplift/ burn (Priority C)			
No change to existing arrangements.			
Design principle 5: Technical: Minimise negative impact on other airspace users		PARTIAL	
(Priority C)			
No change to existing arrangements.			
Design principle 6: Operational: Full ANSP agreement (Priority B)		PARTIAL	
No change to existing arrangements.			

42. Implement some or all of the proposed ATS Routes

Option Name: Implement ATS Routes	ACCEF	PT and PROGRESS
Description of option: This project is proposing to introduce a number of high-level airline operators.	ATS routes in order to enable fu	el and CO_2 savings for
Design principle 1: Operational: Increase in predictable flight planning for		MET
operators and ATC flexibility to better manage busy flows (Priority C)		
Greater flightplanning flexibility, flightplans get closer to typical actual flown track	KS.	
Design principle 2: Operational: Minimise resources needed to progress the		MET
proposal (Priority C)		
No new resources, minimal additional training required (if combined with other S	AIP AD5 training).	
Design principle 3: Environmental: Avoid low-level changes and reduce CO_2		MET
emissions where possible (Priority B)		
All of the proposed ATS Route changes are above FL195 and would not cause a c	change to low level tracks.	
They would deliver a fuel saving for airline operators, reducing CO ₂ emissions.		
Design principle 4: Economic: Reduce flight plan mileage and associated fuel		MET
uplift/ burn (Priority C)		
These proposed ATS Routes would allow shorter flightplan routes for aircraft and	d deliver a fuel uplift saving (cos	t benefit).
Design principle 5: Technical: Minimise negative impact on other airspace users		MET
(Priority C)		
There are no expected impacts on GA users. Potential interactions between civil	and military traffic would be co	ordinated and managed.
Design principle 6: Operational: Full ANSP agreement (Priority B)		MET
No particular impact on other ANSPs. MoD interactions would be coordinated an	nd managed.	

TRA 002 Design Concept

TRA 002 is a Class C, Temporary Reserved Area of CAS between FL195-FL245 weekday daytimes. It is positioned close to where the aforementioned EGBB arrival and departure routes have been proposed; particularly its northwest corner which only gets rarely used by the military.

SAIP AD5 is proposing to introduce new routes linking EGBB traffic with the wider route network in the vicinity of this NW corner. To avoid that corner (vicinity of waypoint LAMAT), the newly-routed EGBB departures would need to either stay below FL195, or exceed FL245, by the time they reach the Bristol area. The design reason is that Birmingham departures could climb more continuously in the region, either SW-bound across the corner, or S-bound improving the likelihood of exceeding FL245 before crossing the TRA's revised boundary – for more details see the Stage 2 Step 2A(i) Design Options document.

The MoD, via DAATM, has formally agreed for NATS to progress this on their behalf as part of this proposal. The design options for the TRA 002 design concept are being considered as either "do-nothing to the TRA, considering the new Birmingham flows" or "implement the corner-cut, considering the new Birmingham flows". This is due to the potential permutations of network components under consideration, requiring a disproportionate combination of analyses should each be considered individually with each other. We contend that this is reasonable at this stage.

43. Do not implement TRA 002 concept (do nothing), considering new EGBB flows

Option Name: Do not implement TRA 002 corner-cut concept	REJECT
Design principle 1: Operational: Increase in predictable flight planning for operators and ATC flexibility to better manage busy flows (Priority C)	PARTIAL
No improvement from today's operation.	
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)	PARTIAL
No additional resources required.	
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂	PARTIAL
emissions where possible (Priority B)	
No change to existing arrangements,	
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)	PARTIAL
No change to existing arrangements.	
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)	PARTIAL
No change to existing arrangements.	· · ·
Design principle 6: Operational: Full ANSP agreement (Priority B)	PARTIAL
No change to existing arrangements.	

44. Implement TRA 002 concept, considering new EGBB flows

Option Name Implement TRA 002 corner-cut concept	ACCEPT and PROGRESS
Design principle 1: Operational: Increase in predictable flight planning for operators and ATC flexibility to better manage busy flows (Priority C)	MET
ATC tactical flexibility would increase	
Design principle 2: Operational: Minimise resources needed to progress the proposal (Priority C)	MET
Some MoD training may be required; however this could be part of the MoD's wid training burden.	ler SAIP AD5 training requirement, thus minimal additional
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂ emissions where possible (Priority B)	MET
No change to low level traffic. Would enable more continuous climbs which can	reduce fuel burn and CO ₂ emissions.
Design principle 4: Economic: Reduce flight plan mileage and associated fuel uplift/ burn (Priority C)	MET
Would enable more continuous climbs which can reduce fuel burn, saving operat	ors money.
Design principle 5: Technical: Minimise negative impact on other airspace users (Priority C)	MET
Has potential to impact MoD operations; however the MoD has agreed that this is	s not a significant issue.
Design principle 6: Operational: Full ANSP agreement (Priority B)	MET
MoD agreement. No impact on other ANSPs.	· · ·

Reference	Description	Summary of progression
EGBB-1B	CAS volumes to be Class C	Class C is an appropriate classification.
EGBB-1C	CAS volumes to be Class D	Class D is an appropriate classification.
EGBB-1F	Routes/ CAS to be established 7 days a week (evenings/ overnights/ mornings)	These FUA timings are appropriate
EGBB-1G	Routes/ CAS to be established 5 days a week (evenings/ overnights/ mornings), H24 at weekends	These FUA timings are appropriate
EGBB-2B	CAS volumes to be Class C	Class C is an appropriate classification.
EGBB-2C	CAS volumes to be Class D	Class D is an appropriate classification.
EGBB-2F	Routes/ CAS to be established 7 days a week (evenings/ overnights/ mornings)	These FUA timings are appropriate
EGBB-2G	Routes/ CAS to be established 5 days a week (evenings/ overnights/ mornings), H24 at weekends	These FUA timings are appropriate
EGLL-1B	Two separate blocks of CAS for EGLL arrivals, volumes to be Class C	Class C is an appropriate classification.
EGLL-1F	Two separate blocks of CAS for EGLL arrivals, CDR1/3 route status	CDR1/3 is an appropriate category
EGLL-1G	Two separate blocks of CAS for EGLL arrivals, CDR3 route status	CDR3 is an appropriate category
EGLL-2B	One block of CAS for EGLL arrivals, volumes to be Class C	Class C is an appropriate classification.
EGLL-2F	One block of CAS for EGLL arrivals, CDR1/3 route status	CDR1/3 is an appropriate category
EGLL-2G	One block of CAS for EGLL arrivals, CDR3 route status	CDR3 is an appropriate category
ATS routes	All, or some, of the proposed high level routes	These routes would provide predictable fuel savings
TRA 002	Revision of NW corner	This revision would provide improved ATC flexibility for EGBB departures

The point of these design components is to explore each scenario in isolation. We can now take the best scoring parts of each component and consider them as follows:

Class C and Class D are both suitable classifications for the proposed CAS. We will consider an appropriate mix of these two classifications, based on the characteristics of each specific CAS volume, in the combined design option concepts.

FUA, CDR3, CDR1/3 are suitable mechanisms to be considered re times and conditions of activation of the proposed EGBB/EGLL routes/CAS. We will consider the possible on/off permutations vs the simplicity of a single combined activation, in the combined design option concepts.

The higher level ATS routes will be considered in the combined design option concepts. The TRA 002 boundary revision will be considered in the combined design option concepts.

Final Combined Design Option Concepts

As described in the Stage 2 Step 2A(i) Design Options document, the longlist of components has been evaluated against the design principles and a logical shortlist of components has emerged – those components designated "Accept and Progress".

These shortlisted components have been combined into two system-wide design concepts; each of which has two sub-options based on time of availability. These combined options take into consideration extensive engagement with, and feedback from, civilian ATC, military ATC, GA experts, airline and airport representatives, development simulations and the design principle evaluation of the components earlier in this document.

Combined designs which support airspace sharing, CAS classifications considered in relation to the location and base level of each specific volume, and the ability to activate/ deactivate under FUA have therefore been prioritised.

For draft charts and more detail please see Step 2A(ii) Design Options document.

45. Combined Concept 1A

- 45.1 This design concept contains a larger Class D CAS volume near EGBB.
- 45.2 The airspace would be available evenings, overnights and mornings, 7 days a week, with appropriate clawback arrangements or consideration of planned special events.
- 45.3 This design concept takes elements from EGBB-1B, EGBB-1C, EGBB-1F, EGLL-1B, EGLL-1F, EGLL-1G, ATS Routes and TRA 002.

Option Name: Combined Concept 1A	Name: Combined Concept 1A ACCEPT and PROGRI		and PROGRESS
Design principle 1: Operational: Increase in predictable flight planning for			MET
operators and ATC flexibility to better manage busy flows (Priority C)			
There would be predictable route availability for EGBB routes and flexibility for EG	LL arrivals.		
Design principle 2: Operational: Minimise resources needed to progress the			MET
proposal (Priority C)			
Development simulations indicate this is both manageable and achievable with an	n acceptable resou	rce effort.	
Design principle 3: Environmental: Avoid low-level changes and reduce CO_2		PARTIAL	
emissions where possible (Priority B)			
The routes would provide a CO ₂ reduction for relevant traffic, which would not change below 7,000ft.			
A new FL65 CAS base may cause some GA flights to reroute or fly lower than they	y do today.		
Design principle 4: Economic: Reduce flight plan mileage and associated fuel		PARTIAL	
uplift/ burn (Priority C)			
This option would allow a reduction in flightplan mileage and fuel uplift/burn but not as much as Concept 1B			
Design principle 5: Technical: Minimise negative impact on other airspace users		PARTIAL	
(Priority C)			
The use of different airspace classifications for different volumes takes better account of the needs of other airspace users when			
compared with the blanket classifications considered at the design component evaluation.			
The larger Class D volume near EGBB potentially has a greater impact on GA and MoD operations compared with Concept 2.			
The deactivation of the structures during core daytime hours minimises the impact on MoD and GA.			
Design principle 6: Operational: Full ANSP agreement (Priority B)			MET
This option would be acceptable for the ANSPs and provides a simpler airspace structure than Concept 2.			

46. Combined Concept 1B

- 46.1 This design concept contains a larger Class D CAS volume near EGBB.
- 46.2 The airspace is established evenings, overnights and mornings on weekdays, and H24 at weekends, with appropriate clawback arrangements or consideration of planned special events.
- 46.3 This design concept takes elements from EGBB-1B, EGBB-1C, EGBB-1G, EGLL-1B, EGLL-1F, EGLL-1G, ATS Routes and TRA 002.

Option Name: Combined Concept 1B	ACCEPT and PROGRESS			
Design principle 1: Operational: Increase in predictable flight planning for			MET	
operators and ATC flexibility to better manage busy flows (Priority C)				
There would be predictable route availability for EGBB routes and flexibility for EG	LL arrivals.			
Design principle 2: Operational: Minimise resources needed to progress the			MET	
proposal (Priority C)				
Development simulations indicate this is both manageable and achievable with ar	n acceptable resou	rce effort.		
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂		PARTIAL		
emissions where possible (Priority B)				
The routes would provide a CO ₂ reduction for relevant traffic, which would not cha	J /			
A new FL65 CAS base may cause some GA flights to reroute or fly lower than they	/ do today.			
Design principle 4: Economic: Reduce flight plan mileage and associated fuel			MET	
uplift/ burn (Priority C)				
This option would allow a reduction in flightplan mileage and fuel uplift/burn, more	e than Concept 1A.			
Design principle 5: Technical: Minimise negative impact on other airspace users		PARTIAL		
(Priority C)				
The use of different airspace classifications for different volumes takes better acc		of other airspac	e users when	
compared with the blanket classifications considered at the design component evaluation.				
The larger Class D volume near EGBB potentially has a greater impact on GA and MoD operations compared with Concept 2.				
The deactivation of the structures during core weekday daytime hours minimises the impact on MoD, however it is recognised that there				
could be specific GA impacts at weekends which may need further mitigation.				
Design principle 6: Operational: Full ANSP agreement (Priority B)			MET	
This option would be acceptable for both ANSPs and provides a simpler airspace structure than Concept 2, however the times would be preferable for both ANSPs as it matches existing ATSOCAS availability (described in para 4.1.2 of Step 24(i))				

47. Combined Concept 2A

- 47.1 This design contains a smaller Class D CAS volume near EGBB.
- 47.2 The airspace would be available evenings, overnights and mornings, 7 days a week, with appropriate clawback arrangements or consideration of planned special events.
- 47.3 This design concept takes elements from EGBB-2B, EGBB-2C, EGBB-2F, EGLL-1B, EGLL-1F, EGLL-1G, ATS Routes and TRA 002.

Option Name: Combined Concept 2A		ACCEPT	and PROGRESS	
Design principle 1: Operational: Increase in predictable flight planning for			MET	
operators and ATC flexibility to better manage busy flows (Priority C)				
There would be predictable route availability for EGBB routes and flexibility for EG	LL arrivals.			
Design principle 2: Operational: Minimise resources needed to progress the			MET	
proposal (Priority C)				
Development simulations indicate this is both manageable and achievable with a	n acceptable resou	irce effort.		
Design principle 3: Environmental: Avoid low-level changes and reduce CO_2		PARTIAL		
emissions where possible (Priority B)				
The routes would provide a CO2 reduction for relevant traffic, which would not cha	ange below 7,000ft			
A new FL65 CAS base may cause some GA flights to reroute or fly lower than the	y do today.			
Design principle 4: Economic: Reduce flight plan mileage and associated fuel		PARTIAL		
uplift/ burn (Priority C)				
This option would allow a reduction in flightplan mileage and fuel uplift/burn but i	not as much as Co	ncept 2B		
Design principle 5: Technical: Minimise negative impact on other airspace users		PARTIAL		
(Priority C)				
The use of different airspace classifications for different volumes takes better ac		of other airspac	e users when	
compared with the blanket classifications considered at the design component evaluation.				
The smaller Class D volume near EGBB has a lesser impact on GA and MoD operations compared with Concept 1.				
The deactivation of the structures during core daytime hours minimises the impact on GA and MoD.				
Design principle 6: Operational: Full ANSP agreement (Priority B)			MET	
This option would be acceptable for both ANSPs and provides a slightly more complex airspace structure than Concept 1.				

48. Combined Concept 2B

- 48.1 This design contains a smaller Class D CAS volume near EGBB.
- 48.2 The airspace is established evenings, overnights and mornings on weekdays, and H24 at weekends, with appropriate clawback arrangements or consideration of planned special events.
- 48.3 This design concept takes elements from EGBB-2B, EGBB-2C, EGBB-2G, EGLL-1B, EGLL-1F, EGLL-1G, ATS Routes and TRA 002.

Option Name: Combined Concept 2B	ACCEPT and PROGRESS			
Design principle 1: Operational: Increase in predictable flight planning for			MET	
operators and ATC flexibility to better manage busy flows (Priority C)				
There would be predictable route availability for EGBB routes and flexibility for EG	There would be predictable route availability for EGBB routes and flexibility for EGLL arrivals.			
Design principle 2: Operational: Minimise resources needed to progress the			MET	
proposal (Priority C)				
Development simulations indicate this is both manageable and achievable with an	n acceptable resou	rce effort.		
Design principle 3: Environmental: Avoid low-level changes and reduce CO ₂		PARTIAL		
emissions where possible (Priority B)				
The routes would provide a CO ₂ reduction for relevant traffic, which would not cha				
A new FL65 CAS base may cause some GA flights to reroute or fly lower than the	/ do today.			
Design principle 4: Economic: Reduce flight plan mileage and associated fuel			MET	
uplift/ burn (Priority C)				
This option would allow a reduction in flightplan mileage and fuel uplift/burn, mor	e than Concept 2A.			
Design principle 5: Technical: Minimise negative impact on other airspace users		PARTIAL		
(Priority C)				
The use of different airspace classifications for different volumes takes better acc		of other airspace	e users when	
compared with the blanket classifications considered at the design component ev				
The larger Class D volume near EGBB potentially has a lesser impact on GA and MoD operations compared with Concept 1.				
The deactivation of the structures during core weekday daytime hours minimises	the impact on MoE), however it is re	ecognised that there	
could be specific GA impacts at weekends which may need further mitigation.				
Design principle 6: Operational: Full ANSP agreement (Priority B)			MET	
This option would be acceptable for both ANSPs even though it provides a slightly more complex airspace structure than Concept 1,				
however the times would be preferable for both ANSPs as it matches existing ATSOCAS availability (described in para 4.1.2 of Step 2A(i)).				

49. Conclusion and Shortlist

- 49.1 The design component options have been evaluated, and the best scoring components have been combined into system concepts which have also been evaluated.
- 49.2 We conclude that the Combined Concepts 1A, 1B, 2A and 2B best meet the design principles and their relative priorities.
- 49.3 The shortlist therefore comprises the baseline do-nothing option, and these four combined concepts.

50. Next Steps

50.1 These four options will be formally appraised under Stage 2 Step 2B Options Appraisal (Phase 1 Initial) including Safety Assessment.

End of document