

Free Route Airspace Deployment 2

Gateway Documentation Stage 4: Submit Step 4A: Final Options Appraisal

© 2022 NATS (En-route) plc ('NERL') all rights reserved NATS Uncontrolled

Roles

Action	Role	Date
Produced	Airspace Change Specialist	05/2022
Produced	Airspace and Future Operations	05/2022
Reviewed	Airspace Implementation Manager (ATC Lead)	
Approved	Airspace and Future Operations	05/2022
Reviewed	Manager Airspace Delivery	
Approved	Airspace and Future Operations	05/2022
Reviewed	Head of Airspace Development	05/2022
Approved	Airspace and Future Operations	05/2022
Reviewed	Head of Corporate and Community Affairs	05/2022
Approved	Airspace and Future Operations	00/2022

Publication history

Issue	Month/Year	Change Requests in this issue				
1.0	05/2022	Submitted to CAA				

References

Ref No	Description	Hyperlinks
1	FRA D2 Stage 4A Update Design	<u>CAA portal</u>
2	LD1.1 Stage 4A Update Design	<u>CAA portal</u>
3	FRA D2 Stage 3 Full Options Appraisal	<u>Link</u>

Contents

1.	Introduction	3
2.	Interdependency with LD1.1 ACP	3
З.	Change Level	3
4.	Forecast Caveat	.3
5.	Capacity Metric	.4
6.	Option Appraisal (Final) Option 1 Full FRA All Routes Removed	.4
7.	Cost Benefit Analysis	6
8.	Safety Assessment	. 8
	Conclusion and Next Steps	
Арре	endix A: WebTAG Calculations for FRA Option 1	9
Appe	endix B: Combined benefits for LD1.1 and FRA D2 (West)1	2

1. Introduction

- 1.1 This document forms part of the document set requirement of the CAP1616 Airspace Change Process.
- 1.2 This document aims to provide adequate evidence to satisfy Stage 4 Submit Gateway, Step 4A Options Appraisal (Phase 3 Final), including Safety Assessment.
- 1.3 The implementation of Free Route Airspace (FRA) is a mandated change and as such is not benefits driven.
- 1.4 As indicated in the Stage 4A Update Design document (Ref 1) there are no proposed changes to the design as a result of the consultation.

2. Interdependency with LD1.1 ACP

- 2.1 In a separate ACP, NATS also proposes that the underlying airspace (airspace from 7,000ft 24,500ft) will be changed concurrently as part of the London Airspace Modernisation Programme 2 (Deployment 1; LD1.1. ACP-2017-70). These ACPs are interdependent¹, cover a common geographic region, and are cumulatively referred to as West Airspace Deployment (West). Consultation was conducted concurrently, and the airspace changes will be implemented simultaneously.
- 2.2 The design changes made in LD1.1 (Ref 2) have led to improvements in the expected benefits for the holistic West benefits from those presented at Stage 3 (Ref 3)². As the FRA benefit is calculated as a proportion of the overall West benefit, this has improved the calculated FRA benefits from those previously provided in Stage 3. Despite there being no changes to the design as a result of the FRA D2 consultation, a Final Options Appraisal has been conducted³ due to the interdependency with the LD1.1 ACP.
- 2.3 Benefits are presented here for the FRA D2, but the combined impact assessment for the West changes is also presented to provide the holistic picture for stakeholders.

3. Change Level

- 3.1 The changes proposed in this ACP affect flights above FL245. Hence in accordance with the Levels as defined in CAP1616, this proposal is categorised as a Level 2B change.
- 3.2 In line with the requirements for a Level 2B change the environmental impact assessment has been conducted on the basis of CO₂e emissions. There would be no perceptible change to noise impacts to stakeholders on the ground, so no noise analysis has been conducted.

4. Forecast Caveat

4.1 The CAP1616 process requires that forecasts and analyses are provided for implementation + 10 years. It should be noted that the aviation industry is recovering from the COVID-19 pandemic, which may result in discrepancies between forecast and how air traffic will be impacted in the medium to long term. As a result, whilst the forecasts used are the best available, there is still a degree of uncertainty associated with them.

 ¹ LD1.1 cannot be implemented independent of FRA because there are no routes proposed above FL245 and no routes in sector
9. Existing routes in sector 9 do not align to the route structure proposed in the LD1.1 ACP. FRA D2 cannot be implemented independent of the LD1.1 ACP because the structural limitation, FRA significant points etc are based on the LD1.1 ACP design.
² See 4A Update Design document for all design changes. Enhancement to the Route Availability Document (RAD) to manage traffic flows were also captured in the modelling which provides an improved assessment of potential benefits.
³ CAP1616 Para 197 states a Final Options Appraisal is not required if there are no changes.

5. Capacity Metric

5.1 NATS has developed a method to quantitively evaluate the impact on ATC capacity of proposed airspace change. This metric was assessed qualitatively at the Full Options Appraisal but has now been quantified in the Final Option Appraisal. We have retained the qualitative assessment in this Final Options Appraisal to enable effective comparison.

6. Option Appraisal (Final) Option 1 Full FRA All Routes Removed

- 6.1 Following consultation and feedback, NATS proposes to progress Option 1 to implement FRA, which is in accordance with the mandated requirements. Following the LD1.1 consultation, FRA D2 will be implemented above FL245.
- 6.2 FRA Option 1 comprises a FRA implementation across the Deployment 2 area with all ATS routes removed and RAD restrictions introduced to manage the flow of traffic in complex areas and transitioning into and out of FRA.
- 6.3 The key analysis is given below, consistent with CAP1616 3rd edition, Appendix E.
- 6.4 There is a fixed correlation between fuel burnt and greenhouse gases emitted. For every 1kg of fuel that is burnt 3.18kg of CO2 equivalent (CO2e) is emitted.
- 6.5 The planned implementation date for FRA D2/LD1.1 is the March 2023 AIRAC. This analysis reflects this and contains forecast data for 2023 (1-year post implementation) and 2033 (10 years post implementation). A full breakdown of interim data for the 10-year forecast is included in Appendix A.

Group	Impact	Level of Analysis	Evidence				
Communities	Noise impact on health and quality of life	N/A	The proposed changes to air traffic patterns are all above FL245 (circa 24,500ft). This is well above the 7,000ft threshold below which noise impacts are considered significant and analysis is required. The potential noise impacts are neither measurable nor describable.				
Communities	Air quality	N/A	Government guidance ⁴ states that aircraft flying higher than 1,000ft are unlikely to have significant impact on local air quality. This airspace change only affects airspace from 24,500 ft and will therefore have no significant impact on air guality.				
Wider society	Greenhouse gas impact	Monetise and quantify		ange in 2023, risi	hat c. 422,069 flights p ng to 587,073 in 2033. 1.1) area.		
			The forecast redu years post-implen		ssions in the opening y wn below	year, and 10	
			Year	No. of Movements	Simulated CO2e (T) saving		
			2023	422,069	6,122		
			2033	587,073	8,513		
			The proposed changes could enable a beneficial net reduction of CO_2e emissions of 6,120 tonnes in 2023. In 2033 there is forecast to be a reduction of CO_2e emissions of 8,513 tonnes for the year. WebTAG was used to assess the greenhouse gas (GHG) impact over 10 years after the proposed changes. 49.3% of flights have origin and				

⁴ Air Navigation Guidance 2017 para 3.28

			destination within the EU (traded), and 50.7% originate or destined for airports outside of the EU (non-traded ⁵).				
			The monetised Net Present Value (NPV) benefit calculated by WebTAG due to the reduction in per flight GHG emissions is £5,049,194.				
			This benefit is the result of shorter average routes due to direct great circle routes in the D2 free route airspace. The additional benefit of reduced fuel uplift and reduced CO ₂ e emissions due to the corresponding weight reduction have not been included. It must be noted that FRA will only enable this benefit. Actual trajectories planned within FRA will be determined by airspace users.				
			The WebTAG GHG worksheet outputs are shown in Error! Reference source not found.				
			The NATS May 21 STATFOR extended forecast was used, and traffic figures grown year-on-year for the WebTAG input.				
Wider society	Capacity/ resilience	Qualitative	Increased flight planning flexibility would allow aircraft operators to flight plan efficiently and would give them the option of avoiding capacity-constrained areas.				
			As forecast traffic levels grow, the ability to avoid restrictions by utilising alternative flight plan routes would reduce the likelihood of delay, thus improving the resilience of the wider route network.				
		Quantitative	The expected impact of this airspace change on operational performance (controller workload, controller enabled capacity) has been modelled and assessed. This modelling predicts a 13.4% increase in controller enabled capacity on average across the affected sectors. This supports the qualitative statement above. This figure is the maximum possible benefit from the modelling and covers the West project (LD1.1 and FRA D2) cumulatively.				
General Aviation (GA)	Access	N/A	GA access to the higher-level airspace above FL245 would be unchanged.				
General Aviation/ commercial airlines	Economic impact from increased effective capacity	Quantify	N/A – there is no forecast increase in air transport movements, passenger numbers or cargo carried as an outcome of this proposal. The flight-plan options this proposal would introduce could allow airlines to avoid capacity constrained areas and avoid consequential delay and cost. However, this is not quantifiable, and no specific capacity increase is assumed or claimed by this proposal.				
General Aviation/ commercial	Fuel burn	Monetise	The forecast reduction of fuel burn in the opening year, and 10 years post- implementation are shown below				
airlines			YearNo. of MovementsSimulated Fuel (T) saving2023422,0691,9252020597,0720,677				
			2033587,0732,677The average calculated network fuel burn saving per flight in FRA D2 is4.56kg.Analysis predicts an enabled decrease in fuel burn, at a saving of £878,724in 2023, increasing to a saving of £1,221,997 in 2033 (both Net Present Value).				

⁵ In accordance with CAA guidance, CO₂e emissions for flights within the EU are accounted for in WebTAG as traded, and flights whose origin or destination are outside of the EU are non-traded. Proportions of flights are derived from analysis of traffic by NATS.

			This was based on the IATA jet fuel price of 9 July 2021, at \$634US per tonne and converted to GBP at 0.72£/\$1 ⁶ (£456 per tonne) and presumes a constant fuel price and exchange rate. The forecast used was NATS May 21 STATFOR extended forecast.
Commercial airlines	Training cost	N/A	N/A – there is not expected to be any airline training cost associated with FRA.
Commercial airlines	Other costs	N/A	Updates to FMS and flight planning systems will by the routine aeronautical information regulation and control (AIRAC) updates. There are no other known costs which would be imposed on commercial aviation.
Airport/Air navigation service provider	Infrastructu re costs	Qualitative and quantitative	This proposal would not lead to any supporting infrastructure costs.
Airport/ Air navigation service provider	Operational costs	N/A	This proposal would not lead to changes in operational costs.
Airport/ Air navigation service provider	Deployment costs	Qualitative and quantitative	This proposal is expected to require air traffic controller familiarisation training, in the order of 120-150 controllers and c.50 assistants at NATS Swanwick, including extensive use of the NATS simulator facility. Support staff are required to run the simulator – planning, training staff, data preparation and testing, pseudo pilots, safety analysts, outputs to be recorded and reported etc. Some staff may only require briefings. There may be occasions where the reduced availability of operational controllers during their conversion training could mean operational rostering becomes a factor when considering continuous service delivery. The MoD may also require briefing prior to deployment.
			The mobility also require briening phorito deployment.

7. Cost Benefit Analysis

- 7.1 The monetised benefits of the final preferred option are presented in the cost benefit analysis below.
- 7.2 The discount rate of 3.5% has been applied as per the standard rate given in the Treasury Green Book Annex A6.
- 7.3 There is a significant degree of uncertainty in predicting how aircraft operators will use FRA.
- 7.4 A benefit assessment is provided for the FRA D2 implementation. Given the interdependency with LD1.1, and to be consistent with data provided in the Full Options Appraisal (Ref 3), the combined benefits assessment for both FRA D2 and LD1.1 implementation are also included.
- 7.5 FRA D2 Option 1 is the proposed final option for this ACP with NPV benefits to 2033 of £20.1million.

⁶ For consistency, the fuel cost figures used in this report are those previously used in Stage 3, in accordance with CAP1616 Appendix F para 14; so impacts of design changes can be seen and a direct comparison made. The cost of fuel has risen significantly since the Full Options Appraisal, and therefore this approach does not reflect the benefits of today. Current day fuel costs are 1,392 USD per tonne converted to GDP at 0.81£/\$ (£1,127 per tonne) (11 May 2022).

CAP1616 cost-benefit example - FRA D2 Final Option, LD1.1 Final Option and Combined West Benefits												
	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	
Year	0	1	2	3	4	5	6	7	8	9	10	NPV
Discount factor	1	0.965	0.931	0.899	0.867	0.837	0.808	0.779	0.752	0.726	0.700	
FRA D2 Final Option												
Net community benefit (CO2)	£793,346	£882,424	£921,427	£933,055	£927,108	£925,872	£917,650	£915,971	£918,242	£913,883	£909,675	
Net airspace users benefit (Fuel)	£878,724	£996,496	£1,060,860	£1,095,096	£1,109,246	£1,129,332	£1,141,200	£1,161,285	£1,186,848	£1,204,194	£1,221,997	
Net sponsor benefit	£0	£0	£0	£0	£0	£0	£0	£0	£0	£0	£0	
Present value	£1,672,070	£1,844,043	£1,909,325	£1,917,143	£1,889,024	£1,870,929	£1,839,214	£1,820,933	£1,810,753	£1,787,744	£1,765,418	£20,126,596
LD1.1 Final Option												
Net community benefit (CO2)	£598,361	£665,754	£695,065	£703,567	£699,283	£698,273	£692,275	£691,292	£692,566	£689,383	£686,408	
Net airspace users benefit (Fuel)	£662,809	£751,823	£800,209	£825,772	£836,728	£851,792	£860,921	£876,442	£895,157	£908,395	£922,090	
Net sponsor benefit	£0	£0	£0	£0	£0	£0	£0	£0	£0	£0	£0	
Present value	£1,261,170	£1,391,262	£1,440,240	£1,445,632	£1,424,876	£1,411,077	£1,387,503	£1,374,282	£1,365,726	£1,348,588	£1,332,131	£15,182,487
Combined: FRA D2/LD1.1 (West)												
Net community benefit (CO2)	£1,391,707	£1,548,178	£1,616,491	£1,636,622	£1,626,390	£1,624,145	£1,609,925	£1,607,264	£1,610,809	£1,603,265	£1,596,083	
Net airspace users benefit (Fuel)	£1,541,533	£1,748,318	£1,861,069	£1,920,868	£1,945,974	£1,981,123	£2,002,121	£2,037,727	£2,082,005	£2,112,589	£2,144,087	
Net sponsor benefit	£0	£0	£0	£0	£0	£0	£0	£0	£0	£0	£0	
Present value	£2,933,240	£3,235,305	£3,349,565	£3,362,775	£3,313,900	£3,282,006	£3,226,717	£3,195,215	£3,176,479	£3,136,331	£3,097,548	£35,309,082

8. Safety Assessment

- 8.1 At Stage 3, in the Full Options Appraisal, we said that project activities so far have included Real Time Simulations (Development and Pre-ACP Validation) and associated Safety and Human Factors workshops.
- 8.2 The initial work that has been done has indicated that the Air Traffic Controllers regard the FRA mode of operation as being very similar to that experienced today. Key factors underlying this are that direct routings that are (tactically) provided today are expected to be reflected in flight plans and that the tools will continue to support Controllers in foreseeing and resolving potential conflicts. Although reduced familiarity with where conflicts may occur is a possibility (due to the removal of the route structure) the tools are designed to provide adequate support in discerning and managing changes in this aspect.
- 8.3 The safety related activities have been completed and will be supplied to the CAA as part of the ACP submission (Step 4B). The safety appraisal finds that nothing is presently foreseen in the FRA option which has the potential to preclude maintenance of the existing level of safety performance in the current operation.

9. Conclusion and Next Steps

- 9.1 This document provides an appraisal of the expected economic and environmental impacts of the implementation of this proposal.
- 9.2 It demonstrates that, while the implementation of FRA D2 is a mandate-driven project, it is expected to deliver economic, environmental and operational performance benefits. This proposal is interdependent on the LD1.1 proposal; the combined implementation of these two ACPs will deliver further positive benefits.
- 9.3 This option has been developed thus far with significant assistance, input, feedback and effort from senior MoD staff, senior representatives of all bordering ANSPs, the European Network Manager, representatives from airlines and flight planning service providers.
- 9.4 NATS thanks all these stakeholders and looks forward to implementing this proposal.

Appendix A: WebTAG Calculations for FRA Option 1

The data used for the inputs to WebTAG are given below:

Year	Base Growth Flights (000's)	Base Growth Rate
2023	2,132	
2024	2,418	13.40%
2025	2,574	6.50%
2026	2,657	3.20%
2027	2,691	1.30%
2028	2,740	1.80%
2029	2,769	1.10%
2030	2,818	1.80%
2031	2,879	2.20%
2032	2,922	1.50%
2033	2,965	1.50%

Table A1: Base Case forecast traffic growth 2023-2033 (NATS May 21 STATFOR extended forecast)

Computer	Modelling	Results:
oomputer	wouching	ricouito.

				-	•	
Year	Flights per Year in FRA D2/LD1 Area	Simulated Fuel Saving (T)	Simulated CO2 saving (T)	CO2 Traded 49.3%	CO2 non-traded 50.7%	Fuel Cost (GBP)
2023	422,069	-1,925	-6,122	-3,018	-3,104	-£878,724
2024	478,695	-2,183	-6,942	-3,422	-3,520	-£996,496
2025	509,584	-2,324	-7,390	-3,643	-3,747	-£1,060,860
2026	525,997	-2,399	-7,629	-3,761	-3,868	-£1,095,096
2027	532,905	-2,430	-7,727	-3,810	-3,918	-£1,109,246
2028	542,534	-2,474	-7,867	-3,879	-3,989	-£1,129,332
2029	548,232	-2,500	-7,950	-3,919	-4,031	-£1,141,200
2030	557,967	-2,544	-8,090	-3,988	-4,102	-£1,161,285
2031	570,108	-2,600	-8,268	-4,076	-4,192	-£1,186,848
2032	578,528	-2,638	-8,389	-4,136	-4,253	-£1,204,194
2033	587,073	-2,677	-8,513	-4,197	-4,316	-£1,221,997

Table A2, computer simulation results for FRA D2

The results calculated by NATS Analytics for the fuel saving and CO₂e savings are given in Table A2 Columns 3 and 4. A negative figure indicates a saving (benefit).

Year	Flights per Year in FRA D2/LD1 Area	Simulated Fuel Saving (T)	Simulated CO2 saving (T)	CO2 Traded 49.3%	CO2 non-traded 50.7%	Fuel Cost (GBP)
2023	422,069	-1,452	-4,617	-2,276	-2,341	-£662,809
2024	478,695	-1,647	-5,237	-2,582	-2,655	-£751,823
2025	509,584	-1,753	-5,575	-2,748	-2,826	-£800,209
2026	525,997	-1,809	-5,753	-2,836	-2,917	-£825,772
2027	532,905	-1,833	-5,829	-2,874	-2,955	-£836,728
2028	542,534	-1,866	-5,934	-2,925	-3,008	-£851,792
2029	548,232	-1,886	-5,997	-2,957	-3,041	-£860,921
2030	557,967	-1,920	-6,106	-3,010	-3,096	-£876,442
2031	570,108	-1,961	-6,236	-3,074	-3,162	-£895,157
2032	578,528	-1,990	-6,328	-3,120	-3,208	-£908,395
2033	587,073	-2,020	-6,424	-3,167	-3,257	-£922,090

Table A3, computer simulation results for LD1.1 Option 6 (FRA from FL245)

The results calculated by NATS Analytics for the fuel saving and CO₂e savings are given in Columns 3 and 4. A negative figure indicates a saving (benefit).

WebTAG GHG Workbook Output: FRA D2 Option 1

Greenhouse Gases Work	kbook - Wor	rksheet 1			
Scheme Name	FRA D2				
Present Value Base Year	2010]			
Current Year	2022]			
Proposal Opening year	2023				
Project (Road/Rail or Road and Rail)	road				
Overall Assessment Score					
Net Present Value of carbon dioxide e	quivalent emissior	ns of proposal (£)	£5,049,194 *positive value reflects a net benefit (i.e. CO2E		
			emissions reduction)		
Quantitative Assessment					
Change in carbon dioxide equivalent emissions over 60 year appraisal period (tonnes) (between 'with scheme' and 'without scheme' scenarios)					
Of which Traded	-41849				
Change in carbon dioxide equivalent e (between 'with scheme' and 'without scheme'	-6,122				
Net Present Value of traded sector carbon dioxide equivalent emissions of proposal (£) £4,909,458 (N.B. this is not additional to the appraisal value in cell 117, as the cost of traded sector emissions is assumed to be internalised into market prices. See TAG Unit A3 for further details) *positive value reflects a net benefit (i.e. CO2E emissions reduction)					
Change in carbon dioxide equivalent e	emissions by carbo		n Budget 3 Carbon Budget 4		
	Traded sector	0 0	0 -17654		
	Non-traded sector	0 0	0 -18157		
Qualitative Comments					
Sensitivity Analysis					
Upper Estimate Net Present Value of Cart	£7,573,792				
Lower Estimate Net Present Value of Carbon dioxide Emissions of Proposal (£):					

Data Sources

© 2022 NATS (En-route) plc FRA D2 Stage4 Final Option Appraisal NATS Unclassified Page 11 of 13

Appendix B: Combined benefits for LD1.1 and FRA D2 (West)

These ACPs are interdependent, cover a common geographic region, and are being implemented concurrently. They are cumulatively referred to by NATS as West Airspace Deployment (West). It is important to note the interdependency of LD1.1 with the FRA D2 ACP, and to recognise the cumulative impact of both ACPs when considering the potential benefits.

To give the complete (combined) picture, the benefits for FRA D2 and LD1.1 are presented, with the summed overall impacts for each option summarised below. This presents the overall expected benefits for the West project as a whole:

	2023	2033	2023	2033
	CO ₂ e (T)	CO ₂ e (T)	CO ₂ e (£ saved)	CO ₂ e (£ saved)
	reduction	reduction	(traded)	(non-traded)
LD1.1 impacts	-4,617	-6,424	£4,909,458	£5,049,194
FRA D2 impacts	-6122	-8,513	£3,703,527	£3,808,698
West (combined) impacts	-10,739	-14,936	£8,612,985	£8,857,893

Table B1 Combined CO2e benefits for LD1.1 and FRA D2

	2023	2033 Fuel	2023 Fuel	2033 Fuel
	Fuel saving (T)	saving (T)	Fuel saving (£)	Fuel saving (T)
LD1.1 impacts	-1,452	-2,020	662,809	922,090
FRA D2 impacts	-1,925	-2,677	878,724	1,221,997
West (combined) impacts	-3,377	-4,697	£1,541,533	£2,144,087

Table B2 Combined fuel impact for LD1.1 and FRA D2

Modelling assumptions

The AirTOp ATC computer simulation software was utilised plus RALPH pre-processor v1.3.17, and NEMo post processorv2.6

Traffic levels were grown as per the May 21 STATFOR extended forecast.

The same traffic sample has been used in all baseline and scenario models to ensure a valid comparison. One sample day (14th June 2018) was modelled in a westerly configuration. To account for the 2 easterly SID Truncations for EGGD/EGFF as part of the West project, the easterly configuration of these flows has been modelled and accounted for in the overall figures using a 30/70 split for Easterly/Westerly.

Trajectory profiles are calculated using NATS business intelligence (BI) data statistics on observed climb/descend rates, speeds and turn rates for BADA aircraft groups.

No "go-arounds" were simulated.

The current airspace was connected to the proposed designs inside West Airspace where possible.

Validation of the model was conducted by the West ATC design team and Analytics; this task was completed to a level acceptable with the design team.

The baseline model included SAIP AD4/5 and Farnborough ACP.

Issue 1.0

The West P8 design for Stage 4 modifies one of the EGGW STAR changes introduced as part of SAIP AD6. Therefore, this STAR has been adjusted to route via MOREZ instead of OCK in the baseline.

As the West design utilises two EGLC SID truncations being introduced as part of OSEP before the planned West implementation date, these have been included in both the baseline and scenario models for Stage 4.

Unconstrained demand was modelled, thereby excluding the naturally occurring influence of flow restrictions (i.e. no regulations were applied to the traffic sample).

A "blue sky" weather scenario, where no wind effects are present, was assumed.

No conflict resolution was applied en-route.

No network effects are simulated (i.e. no holding, vectoring, AMAN, runway arrival and departure separations).

No randomisation of flight plan departure times was utilised.

Fuel burn was calculated using NATS NEMO tool which uses BADA 4.2 data. Aircraft types not in BADA 4.2 use BADA 3.13 data.

Controller tasks were completed instantaneously with each controller able to control multiple aircraft simultaneously (i.e. no workload or response time constraints).

Sectorisation has been based on the Eurocontrol sector definitions.

The following updates were made to the traffic sample as requested by the project team:

- B744 and A380 aircraft types for BAW were replaced with 60% B772 and 40% B788
- A318 aircraft types for BAW were removed from our sample
- A340 aircraft types for VIR were replaced with B789

Following validation with the design team, aircraft arriving at EG airports (except domestics) were modelled using the respective BADA low weight fuel burn rates. All others were modelled using BADA's nominal weight fuel burn rates.