Future Airspace Strategy Implementation (FASI)

London Terminal Manoeuvring Area (LTMA)

Airspace Change Proposal (ACP) ACP-2020-043 ACP-2020-044 ACP-2020-045

Stage 2 Develop and Assess Luton Airport Arrivals Connectivity Module

To be read in conjunction with Master Document

1. Introduction

1.1 About this document

- 1.1.1 This document describes the arrival connectivity options for Luton Airport, which have been developed using the methodology described in Section 2 (Methodology) of the Master document.
- 1.1.2 Luton is an international airport, and the 4th largest airport in the LTMA, located 28 miles north of central London. It is a single-runway airport, serving as a base for easyJet, TUI Airways, Ryanair and WizzAir and other operators including a significant business jet operation. The vast majority of routes served are within Europe.

2. Baseline

- 2.1.1 This description of the current airspace around Luton should be considered the 'Do Nothing' option if no airspace change was to take place.
- 2.1.2 Table 1 shows actual¹ airport traffic counts from the 2019 baseline traffic year to 2022. The NERL forecast for network traffic levels is shown in the Master document Section 3.9. Airport forecasts are independent of the network and will be included within airport ACPs.

Year	Arrivals	Departures	Total Movements
2019	70,441	70,474	140,915
2020	31,723	31,681	63,404
2021	30,748	30,710	61,458
2022	58,968	58,895	117,863

Table 1 Actual air traffic movements: Luton Airport 2019-2022

2.1.3 Luton arrival and departure procedures (STARs & SIDs) are shown in Figure 1 and described in Table 2 & Table 3. Previously, Luton and Stansted shared holding facilities. A new hold was implemented for Luton in 2022, which separated Luton arrival traffic from Stansted arrival traffic. The new hold, ZAGZO, provides for delay absorption.

Airport	Hold	STARs	Associated ATS Routes
Luton	ZAGZO	UNDUG 1N, BEDEK 1N, RINIS 1N, TOSVA 1N, XAMAN 1N, TELTU 1N, LISTO 1N, BARMI 1N, FINMA1N, DET 2A, SILVA 1N, LOGAN 2A	M40, Y6, L980, (U)M733, (U)M185, N17, L982, (U)N6, L612, P18, Q4, (U)Y124, Z197, P7, P2, L15/M605, N57, M183, Q41, L608

Table 2 Current arrival connectivity for Luton

2.1.4 Luton has several SIDs which join with the ATS route network at designated waypoints ² (Table 3).

Airport	SIDs	Associated ATS Routes
	OLNEY (2B/2C)	T420, N57
Luton	MATCH (2B/2C/3Y)	Q295
	DET (8B/7C/3Y)	L6, Q70
	CPT (4B/7C)	Q63, N859, Y321, N866

Table 3 Current departure connectivity for Luton

¹ This is based on CFMU actual data for 2019; this may vary from airport data.

² SIDs are all below 7,000ft and will be subject to Airport ACP. NERL will ensure network connectivity.

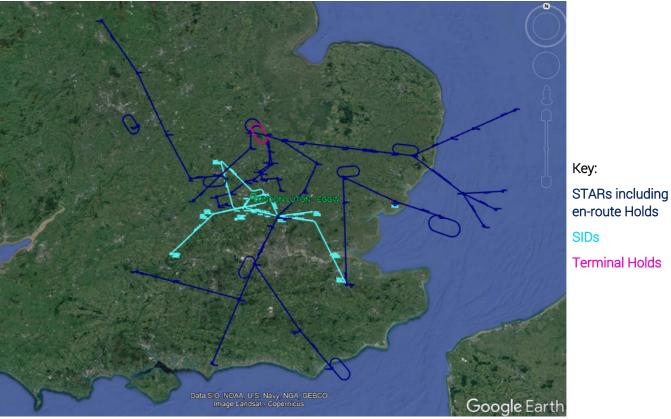


Figure 1 Current arrival and departure procedures for Luton

2.1.5 Figure 2 shows a radar density plot of Luton arrival traffic for a typical busy summer week³ and indicates traffic distribution. About half of Luton's traffic arrives from the east.

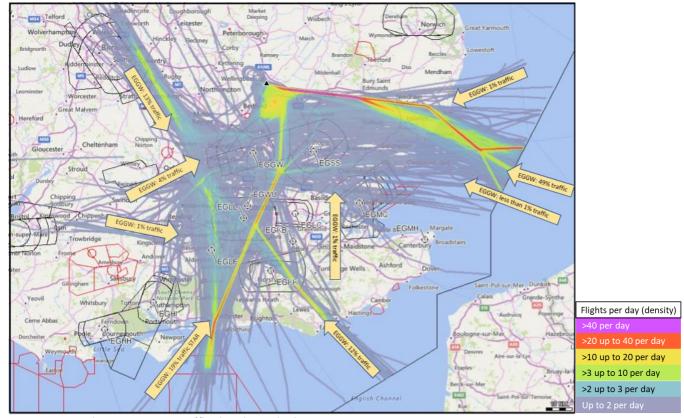


Figure 2 EGGW traffic density arrivals FL245-FL70 5-11 August 2022

³ For this diagram, traffic proportions are taken from 24th February 2022 to 31 August 2022 due to the changes made to Luton airspace from this date, so the 2019 baseline is not representative of current traffic flows. Luton had around 33,000 arrivals during this period.

2.1.6 Medium jets are the most prevalent aircraft type at Luton, as shown in Table 4. easyJet was the most prevalent operator in 2019, with approximately 35% of the traffic.

Luton – Aircraft Type				
Aircraft Group	Movements	% traffic		
Small Jet	17,312	12%		
Medium Jet	119,399	85%		
Heavy Jet	3,377	2%		
Turboprop/Piston/Prop	811	<1%		

Luton – Top 4 Aircraft Operator Usage				
Operator	Movements	% traffic		
easyJet	49,476	35%		
WizzAir	40,744	29%		
RyanAir	13,422	10%		
NetJets	2,797	2%		

Table 4 Aircraft type and top carriers⁴ - Luton

3. Design Development

3.1.1 Working with the airport, NERL developed 14 high-level concept options for Luton⁵. NERL has assessed that based on required traffic loading, Luton would require at least one hold, either attached to an RMA or attached to a systemised arrival structure. Initial viability assessments were produced for location and structure type and presented to stakeholders in formal engagement (Ref 7). Feedback was requested through the engagement response questionnaire.

3.2 Stakeholder engagement

- 3.2.1 We received 5 responses from 5 different stakeholders related to the Luton design concepts. Table 5 presents a summary of the feedback and how this has influenced the design.
- 3.2.2 Feedback was generally in support of the design options.
- 3.2.3 No new options were developed as a result of the stakeholder engagement.

Stakeholder	Feedback ('You said')	Response ('We did')
Airspace4All	Major airports requiring flow management would benefit from PBN approaches and systemised approach structures.	Feedback was used to inform the evaluation of DP1, DP2, DP3 & DP8. The traffic demand is considered when making these assessments so the impact on individual airports is considered.
Ryanair	Capacity is most important, so whatever drives max capacity.	No amendment to design envelope or design options required.
British Airways	Considering the number of movements at Luton, this must be deprioritized to facilitate Heathrow and Gatwick efficiencies.	At this stage, no airport will be prioritised over another, as we strive for a balanced network-wide design. Stage 3 development will identify prioritisation needs.
BGA	Solutions suggest airspace solutions above 7,000ft to the north. This airspace is rarely used for glider operations.	We used this feedback to inform our evaluation of DP5 and DP6.
Luton Airport	Supports the design area.	No changes as a result of this feedback. However, design envelope altered to remove the area to the east of the airfield after ongoing SME development deemed this area unviable due to proximity to other airfields.

Table 5 Engagement feedback and NERL response

⁴ 2019 aircraft/operator data is considered still relevant as the Luton airspace change is not expected to impact the fleet/operator mix.

⁵ See Master document Section 2.2 for a detailed description of this work.

3.3 Luton Design Concepts

- 3.3.1 Table 6 summarises the high-level qualitative considerations for potential locations for Luton arrival structures, and Table 7 summarises the viability assessment for the arrival structures suitable for Luton. These have been developed from SME input and stakeholder engagement.
- 3.3.2 SME design development determined that the area to the east of the airfield was not viable due to confliction with other LTMA traffic. The location viability matrix and design envelope were revised to reflect this.
- 3.3.3 As described in the Master document paras 2.4.2 & 2.4.3, the concepts Holds Further Out and Trombones were removed as viable concepts at this stage. A detailed description of each structure can be found in Appendix 1.

Location	Viability Considerations
North	An arrival structure to the north of the airfield is already in place within the current design. A structure in this area remains possible, subject to deconfliction with Stansted traffic.
Northeast	There is sufficient airspace to enable an arrival structure, and associated connectivity, to the northeast of the airfield, subject to deconfliction with Stansted traffic and USAFE Lakenheath & Mildenhall DA Complex.
East	An arrival structure, and associated connectivity, to the east of the airfield would likely conflict with Stansted traffic.
Southeast	An arrival structure, and associated connectivity, to the southeast of the airfield would likely conflict with Biggin Hill, Heathrow, London City, Northolt, Southend and Stansted traffic.
South	An arrival structure, and associated connectivity, to the south of the airfield would likely conflict with Farnborough, Heathrow, London City, and Northolt traffic.
Southwest	An arrival structure, and associated connectivity, to the southwest of the airfield would likely conflict with Bournemouth, Farnborough, Heathrow, London City, Northolt and Southampton traffic.
West	An arrival structure, and associated connectivity, to the west of the airfield would likely conflict with Bournemouth, Farnborough, Heathrow, London City, Northolt, Southampton and Stansted traffic.
Northwest	There is sufficient airspace to enable an arrival structure, and associated connectivity, to the northwest of the airfield, subject to deconfliction with Bournemouth, Farnborough, Heathrow, London City, Northolt, Southampton and Stansted traffic.
Overhead	An arrival structure, and associated connectivity, overhead the airfield would likely conflict with Heathrow, London City, Northolt and Stansted traffic.

Table 6 Luton Arrivals: Location viability considerations - post engagement

Structure	Viability Considerations
Optimised	Optimisation of current day structures.
(inner) holds	There is sufficient airspace for optimised hold(s), and this would likely meet the runway throughput demands.
Point Merge	There is sufficient airspace for a Point Merge, and this would likely meet the runway throughput demands.
Switch Merge	There is insufficient airspace to suitably place a Switch Merge.

Table 7 Luton Arrival structures: Viability considerations – post engagement

- 3.3.4 Figure 3 shows the Luton design envelope, developed by SMEs through collaborative workshops and formal engagement with Luton and other stakeholders. This design envelope is based on the viability considerations presented above in paragraph 3.3.1, Table 6 & Table 7, developed through two-way engagement as shown in Table 5.
- 3.3.5 Airspace design constraints, as described in the Master document Section 3.5, are highlighted in orange. A consideration for Luton is the vicinity of the USAFE Lakenheath & Mildenhall Combined Military Aerodrome Traffic Zone (CMATZ) as shown.

Figure 3 Luton Design Envelope and design constraints – post engagement and SME development

3.3.6 The Luton Design Concepts which were considered viable at this stage, within the Design Envelope presented, are shown in the Luton Arrival Structure Viability Assessment below (Figure 4).

Figure 4 Luton Design Options Viability Matrix

3.3.7 These 6 viable options were taken forward as the comprehensive list to Design Principle Evaluation, along with 'Do Nothing'.

3.4 Design Principle Evaluation

Table 8 shows the DPE assessment criteria. SMEs, in this case air traffic control experts and airspace change experts, list topics associated with each DP and qualitatively test how each option would react to those topics, describing how a red/amber/green outcome is reached.

DP	Priority	Description	SME subjective assessment topics, include but not limited to	Red	Amber	Green
0	A AMS	Safety Safety is always the highest priority (Note: Red could not be solved by mitigation, amber may be able to be solved by mitigation).	Human performance (ATCO control-ability) Human performance (pilot fly-ability) IFP (fly-ability) Surrounding airspace users (inside/outside of CAS) Impact if ATM tools fail	Unacceptable level of safety risk	Diminished - Issue(s) identified could result in an elevated level of safety risk when compared to today's operation	Enhanced - improvement over today's level of safety. Maintained - safety risk could be maintained within acceptable levels of today's operation
			Network Weather avoidance Disruption in neighbouring ANSPs	Reduced resilience and capacity during disruption	Similar resilience and capacity during disruption	Increased resilience and capacity during disruption
1	B AMS	I The aircnace will enable increased	Airport Holding levels Delay absorption between hold and 7,000ft	Reduction in delay absorption	Delay absorption similar to today	Improve delay absorption
			Airport Time to restart after runway closure Number of aircraft off the hold	Reduction in disruption recovery	Disruption recovery similar to today	Improve disruption recovery
2	В	Economic Optimise network fuel performance	Track mileage Economic performance Aircraft height Method of delay absorption	Fuel performance worsened	Fuel performance similar to today	Fuel performance improved
3	B AMS	Environmental Optimise CO ₂ emissions per flight	Track mileage GHG performance Aircraft height Method of delay absorption	CO ₂ emissions worsened	CO ₂ emissions similar to today	CO ₂ emissions improved
4	С	Environmental Minimising of noise impacts due to LAMP influence will take place in accordance with local needs	Overall environmental impact Environmental impact below 7,000ft Impact on tranquillity (or visual intrusion)	LAMP influence not aligned with local ACP sponsors' needs	Extent of alignment not yet known	LAMP influence fully aligned with local ACP sponsors' needs

DP	Priority	Description	SME subjective assessment topics, include but not limited to	Red	Amber	Green
5	С	Technical The volume of controlled airspace required for LAMP should be the minimum necessary to deliver an efficient airspace design, taking into account the needs of the UK airspace users	Lateral footprint of CAS Vertical footprint of CAS Proportional to airport traffic levels	Airspace required not the minimum necessary to deliver an efficient design	Extent of airspace required not yet known	Airspace required the minimum necessary to deliver an efficient design
6	C AMS	Technical The impacts on GA and other civilian airspace users due to LAMP will be minimised	Change to boundaries of CAS Changes to CAS classification Safety based impacts	Excessive negative impacts	Negative impacts minimised but requires changes to other airspace users' activities	Negative impacts minimised, no impact, or positive impacts to other airspace users' current activities
7	C AMS	Technical The impacts on MoD users due to LAMP will be minimised	Overall amount of danger area available Amount of time for danger area available Flexible use airspace provision Change to access between danger areas Safety based impacts Radar corridor access	Negative impacts not minimised or would require excessive changes to current MoD operations	Negative impacts minimised but requires changes to current MoD operations Or Extent of impact not yet known	Negative impacts minimised or no negative impact on current MoD operations
8	В	Operational Systemisation will deliver the optimal capacity and efficiency benefits	Traffic throughput Sectorisation Effect on overall network capacity Effect on airports' arrival flow	Design option unable to support the forecast traffic loading for the airport and the network	Design option supports the forecast traffic loading for the airport or the network	Design option supports the forecast traffic loading beyond the reference period for both the airport and the network
	AMS	(Note: This is about airspace capacity, not ground infrastructure capacity which could be the limiting factor to overall airport capacity).	Overall ATCO workload Levels of tactical intervention (radio transmissions per flight) No increase to operations requirements Balancing out of hot spots	Design option increases ATCO workload	ATCO workload similar to today	Design option decreases ATCO workload

DP	Priority	Description	SME subjective assessment topics, include but not limited to	Red	Amber	Green
9	В	Technical The main route network linking airport procedures with the En Route phase of flight will be spaced to yield maximum safety and efficiency benefits by using an appropriate standard of PBN (Note: The main route network is considered as FL70 - FL245. Approach structures are not considered as 'the main route network').	Airspace requirement vs. RNAV rating Required aircraft equipage standards	PBN standard applied to route spacing would decrease efficiency and safety	PBN standard applied to route spacing would limit efficiency and safety benefits	PBN standard applied to route spacing is likely to maximise efficiency and safety benefits
10	А	Policy Must accord with the CAA's published Airspace Modernisation Strategy (CAP1711) and any current or future plans associated with it.	AMS "Ends" Strategic Objectives Safety (DP0) Integration of diverse users (DP6 and DP7) Simplification (DP1 and DP8) Environmental sustainability (DP3)	No or limited alignment with the AMS	Partial alignment with the AMS	Aligned with the AMS

Table 8 Design Principle Evaluation Assessment Criteria

3.4.2 Table 9 shows the AMS assessment criteria which are used to determine the overall RAG status for DP10.

DP10 outcome	Criteria for DP0, DP1, DP3, DP6, DP7, and DP8
Red	DP0 (Safety) is red OR 2 other DPs are red
Amber	All other colour combinations not covered by Red or Green
Green	2 DPs are green and 0 are red OR 3 DPs are green and 1 is red

Table 9 - AMS Assessment Criteria

3.4.3 The criteria in Table 10 describe how each option's overall combination of reds/ambers/greens lead to the option progressing to the next step or to rejection and discounting from further development.

DP Priority	Criteria for Rejection Status		
Α	1 red OR 1 amber		
В	2 reds		
С	2 reds		

Table 10 - Accept / Reject Criteria

3.4.4 Each design option has been assessed against the Design Principles. The following code is used for each design option. Airport (e.g. GW) - Structure Type (e.g. Inner Hold: IH/Point Merge: PM) - Location (e.g. Northeast: NE). DN = Do Nothing. DM = Do Minimum.

	1			/ V/~/ _)
DP	Priority	GW - DN	GW - IH - N (DM)	GW - IH - NE
RESULT		REJECT	ACCEPT	ACCEPT
DP0 Safety	A AMS	Maintained: Similar operation to today	Maintained: Holds are used in current day operations and are known to be safe	Maintained: Holds are used in current day operations and are known to be safe
DP1 Operational (Delay Absorption)	B AMS	Today's operation, no change from baseline	Optimised concept of current day operation, which provides similar delay absorption	Optimised concept of current day operation, which provides similar delay absorption
DP1 Operational (Disruption Recovery)	B AMS	Today's operation, no change from baseline	Optimised concept of current day operation, which provides similar disruption recovery	Optimised concept of current day operation, which provides similar disruption recovery
DP2 Economic (Fuel)	В	Today's operation, no change from baseline	Similar to today, which does not align with airport traffic flows	Optimised concept aligned with airport traffic flows, therefore improved fuel performance
DP3 Environmental (CO ₂)	B AMS	Today's operation, no change from baseline	Similar to today, which does not align with airport traffic flows	Optimised concept aligned with airport traffic flows, therefore improved CO ₂ emissions per flight
DP4 Environmental (Noise)	С	Today's operation, no change from baseline	Impact on routes (and noise distribution) below 7,000ft not known at this point	Impact on routes (and noise distribution) below 7,000ft not known at this point
DP5 Technical (CAS)	С	Today's operation, no change from baseline	Design likely to be within current day CAS; ability to return CAS will be assessed in Stage 3	Design likely to be within current day CAS; ability to return CAS will be assessed in Stage 3
DP6 Technical (Other Users)	C AMS	Today's operation, no change from baseline	Likely to be in current day CAS, no anticipated change in impacts	Likely to be in current day CAS, no anticipated change in impacts
DP7 Technical (MoD)	C AMS	Operation is known not to impact MoD currently, therefore no change in impact	Assumes design would not impact the Daventry Corridor. Therefore, no negative impact on current MoD operations	Assumes design would not impact USAFE Lakenheath & Mildenhall. Therefore, no negative impact on current MoD operations
DP8 Operational (Capacity)	B AMS	Aligns with network traffic flows but does not support forecast network loading. Can support the airport required arrival loading	Aligns with network traffic flows and concept can support the airport required arrival loading	Aligns with network traffic flows and concept can support the airport required arrival loading
DP8 Operational (Efficiency)	B AMS	Today's operation, no change in ATCO workload anticipated	Similar concept to today's operation, therefore no change in ATCO workload anticipated	Similar concept to today's operation, therefore no change in ATCO workload anticipated
DP9 Technical (Route Spacing)	B AMS	Does not fully utilise the performance capabilities of modern aircraft	Structure will be designed, in collaboration with the airport, to the highest appropriate PBN standard enabling efficient spacing between routes	Structure will be designed, in collaboration with the airport, to the highest appropriate PBN standard enabling efficient spacing between routes
DP10 Policy (AMS)	А	Green: DP0, DP7 Amber: DP1, DP1, DP3, DP6, DP8, DP8 Red: DP9	Green: DP0, DP7, DP8, DP9 Amber: DP1, DP1, DP3, DP6, DP8 Red: None	Green: DP0, DP3, DP7, DP8, DP9 Amber: DP1, DP1, DP6, DP8 Red: None

DP	Priority	GW - IH - NW	GW - PM - N	GW - PM - NE
RESULT		REJECT	REJECT	ACCEPT
DP0 Safety	A AMS	Maintained: Holds are used in current day operations and are known to be safe	Enhanced: Reduced controller tactical intervention required, reducing potential for human error	Enhanced: Reduced controller tactical intervention required, reducing potential for human error
DP1 Operational (Delay Absorption)	B AMS	Optimised concept of current day operation, which provides similar delay absorption	Additional holding capacity, plus delay absorption by flying the PM	Additional holding capacity, plus delay absorption by flying the PM
DP1 Operational (Disruption Recovery)	B AMS	Optimised concept of current day operation, which provides similar disruption recovery	Assumed contingency hold within the transition, net disruption recovery similar to today	Assumed contingency hold within the transition, net disruption recovery similar to today
DP2 Economic (Fuel)	В	Does not align with airport traffic flows, therefore increased track miles and fuel performance worsened	Worsened due to extended track miles to complete the PM structure. Not aligned with airport traffic flows. Net worsened	Extended track miles to complete the PM structure. Aligns with airport traffic flows. Net neutral
DP3 Environmental (CO ₂)	B AMS	Does not align with airport traffic flows, therefore increased track miles and CO ₂ emissions per flight worsened	Worsened due to extended track miles to complete the PM structure. Not aligned with airport traffic flows. Net worsened	Extended track miles to complete the PM structure. Aligns with airport traffic flows. Net neutral
DP4 Environmental (Noise)	С	Impact on routes (and noise distribution) below 7,000ft not known at this point	Impact on routes (and noise distribution) below 7,000ft not known at this point	Impact on routes (and noise distribution) below 7,000ft not known at this point
DP5 Technical (CAS)	С	Design likely to be within current day CAS; ability to return CAS will be assessed in Stage 3	A design to the north may require additional CAS, depending on location. Therefore, extent not yet known	A design to the northeast may require additional CAS, depending on location. Therefore, extent not yet known
DP6 Technical (Other Users)	C AMS	Likely to be in current day CAS, no anticipated change in impacts	Potential additional CAS may require changes to other airspace users' activities	Potential additional CAS may require changes to other airspace users' activities
DP7 Technical (MoD)	C AMS	Assumes design would not impact the Daventry Corridor. Therefore, no negative impact on current MoD operations	Negative impact on MoD would be excessive due to activities in East Anglia and Daventry Corridor	If in current CAS, no negative impact on MoD operations. If in additional CAS, excessive changes to MoD operations in East Anglia. Therefore, extent not yet known
DP8 Operational (Capacity)	B AMS	Supports the required airport arrival loading, however, negatively impacts capacity of northbound network traffic flows	Supports the required airport arrival loading, however, negatively impacts capacity of northbound network traffic flows	Aligns with network traffic flows and concept can support the airport required arrival loading
DP8 Operational (Efficiency)	B AMS	Similar concept to today's operation. Negatively impacts on network traffic flows. Net increase in workload	PM structure require less tactical intervention. Negatively impacts on network traffic flows; increases ATCO workload. Net neutral	PM structure require less tactical intervention
DP9 Technical (Route Spacing)	B AMS	Structure will be designed, in collaboration with the airport, to the highest appropriate PBN standard enabling efficient spacing between routes	Structure will be designed, in collaboration with the airport, to the highest appropriate PBN standard enabling efficient spacing between routes	Structure will be designed, in collaboration with the airport, to the highest appropriate PBN standard enabling efficient spacing between routes
DP10 Policy (AMS)	А	Green: DP0, DP7, DP9 Amber: DP1, DP1, DP6, DP8 Red: DP3, DP8	Green: DP0, DP1, DP9 Amber: DP1, DP6, DP8, DP8 Red: DP3, DP7	Green: DP0, DP1, DP8, DP8, DP9 Amber: DP1, DP3, DP6, DP7 Red: None

DP	Priority	GW - PM - NW
RESULT		REJECT
DP0 Safety	A AMS	Enhanced: Reduced controller tactical intervention required, reducing potential for human error
DP1 Operational (Delay Absorption)	B AMS	Additional holding capacity, plus delay absorption by flying the PM
DP1 Operational (Disruption Recovery)	B AMS	Assumed contingency hold within the transition, net disruption recovery similar to today
DP2 Economic (Fuel)	В	Worsened due to extended track miles to complete the PM structure. Not aligned with airport traffic flows. Net worsened
DP3 Environmental (CO ₂)	B AMS	Worsened due to extended track miles to complete the PM structure. Not aligned with airport traffic flows. Net worsened
DP4 Environmental (Noise)	С	Impact on routes (and noise distribution) below 7,000ft not known at this point
DP5 Technical (CAS)	С	Design likely to be within current day CAS; ability to return CAS will be assessed in Stage 3
DP6 Technical (Other Users)	C AMS	Likely to be in current day CAS, no anticipated change in impacts
DP7 Technical (MoD)	C AMS	Negative impact on MoD would be excessive due to activities in Daventry Corridor
DP8 Operational (Capacity)	B AMS	Supports the required airport arrival loading, however, negatively impacts capacity of northbound network traffic flows
DP8 Operational (Efficiency)	B AMS	PM structure require less tactical intervention. Negatively impacts on network traffic flows; increases ATCO workload. Net neutral
DP9 Technical (Route Spacing)	B AMS	Structure will be designed, in collaboration with the airport, to the highest appropriate PBN standard enabling efficient spacing between routes
DP10 Policy (AMS)	А	Green: DP0, DP1, DP9 Amber: DP1, DP6, DP8, DP8 Red: DP3, DP7

Table 11 Desing Principle Evaluation

3.4.5 'Do Nothing' and 3 design options were assessed as not meeting the DPs and were rejected at this stage. The remaining 3 design options progress to Step 2B Options Appraisal.

3.5 Initial Options Appraisal

Table 12 shows the assessment criteria used to complete the initial appraisal of each shortlisted option.

able 12 shows th	ne assessment criteria used to complete the initial appraisal of each shortlisted option.
Group	Impact
Communities	Noise impact on health and quality of life
A qualitative asses	ssment of changes to noise impacts compared with the 'Do Nothing' baseline.
A qualitative asses	ssment of changes to tranquillity impacts compared with the 'Do Nothing' baseline.
Communities	Air Quality
A qualitative asses	ssment of changes to local air quality compared with the 'Do Nothing' baseline.
Wider Society	Greenhouse Gas Impacts
A qualitative asses	ssment of changes to greenhouse gas impacts compared with the 'Do Nothing' baseline.
Wider Society	Capacity / Resilience
A qualitative asses	ssment of changes to airspace capacity and resilience compared with the 'Do Nothing' baseline.
General Aviation (,
	ssment of changes to GA access compared with the 'Do Nothing' baseline.
	irlines Economic Impact from Increased Effective Capacity
A qualitative asses	ssment of changes to GA and commercial operator economic impacts from increased effective
	d with the 'Do Nothing' baseline.
GA/Commercial A	
•	ssment of changes to GA and commercial operator fuel burn impacts compared with the 'Do Nothing'
baseline.	
Commercial Airlin	<u> </u>
	ssment of changes to commercial operator training costs compared with the 'Do Nothing' baseline.
Commercial Airlin	
•	ssment of changes to other relevant commercial operator costs compared with the 'Do Nothing'
baseline.	
Airport / ANSP	Infrastructure Costs
	ssment of changes to airport and ANSP infrastructure costs compared with the 'Do Nothing' baseline.
Airport / ANSP	Operational Costs
	ssment of changes to airport and ANSP operational costs compared with the 'Do Nothing' baseline.
Airport / ANSP	Deployment Costs
	ssment of changes to airport and ANSP deployment costs compared with the 'Do Nothing' baseline.
	nce against the vision and parameters/strategic objectives of the AMS
•	ssment of how the design option performs, considering the AMS objectives of improved capacity,
reduced CO ₂ , mini	mal impact on other users, maintaining or enhancing safety, and facilitation of defence and security

objectives, compared with the 'Do Nothing' baseline.

Table 12 Initial Options Appraisal Assessment Criteria

GW-DN Qualitative Initial Impacts Assessment

Group

Impact

Communities Noise impact on health and quality of life

ANG (2017) states "at or above 7,000ft...minimising of noise is no longer a priority". CAP1616 instructs sponsors to consider noise and tranquillity impacts where the proposal has the potential to change overflight of inhabited areas, AONBs and NPs below 7,000ft. No change in airspace design – no changes to impacts.

Communities Air Quality

ANG (2017) states "emissions from aircraft above 1,000ft are unlikely to have a significant impact on local air quality". No change in airspace design – no changes to impacts.

Wider Society Greenhouse Gas Impacts

In the short term, there would be no change. In the long term, failure to modernise the airspace would have a negative impact on GHG emissions due to increased likelihood of delays/holding in an unchanged design as traffic is forecast to increase.

Wider Society Capacity / Resilience

In the short term, there would be no change. In the long term, failure to modernise the airspace would have a negative impact on capacity and resilience due to increased likelihood of delays/holding in an unchanged design as traffic is forecast to increase.

General Aviation (GA) Access

In the short term, there would be no change in impact. In the long term, failure to modernise the airspace would lead to increased likelihood of commercial aircraft delays and holding in an unchanged design as traffic is forecast to increase. This may lead to negative impacts on GA access due to the busier airspace, however as GA access is currently relatively infrequent at network levels, this may not be a major impact.

GA/Commercial Airlines Economic Impact from Increased Effective Capacity

In the short term, there would be no change in impact. In the long term, failure to modernise the airspace would have a negative impact on capacity due to increased likelihood of delays/holding in an unchanged design as traffic is forecast to increase. This would lead to a negative economic impact.

GA/Commercial Airlines Fuel Burn

In the short term, there would be no change in impact. In the long term, failure to modernise the airspace would have a negative impact on fuel burn due to increased likelihood of delays/holding in an unchanged design as traffic is forecast to increase.

Commercial Airlines Training Costs

Flight procedures change worldwide with each AIRAC cycle and operators would update their procedures accordingly, training staff if required. If this baseline system was retained, the same flight procedures would be used, and training cost impacts would not change.

Commercial Airlines Other Costs

No change in airspace design – no changes to other commercial operator costs.

Airport / ANSP Infrastructure Costs

No change in airspace design – no changes to infrastructure costs. If this baseline system was retained, the same infrastructure would continue to be used in the same way, with no additional costs.

Airport / ANSP Operational Costs

No change in airspace design – no changes to infrastructure costs. If this baseline system was retained, the same infrastructure would continue to be used in the same way, with no additional operational costs.

Airport / ANSP Deployment Costs

If this baseline system was retained, there would be no deployment, hence no associated costs.

AMS Performance against the vision and parameters/strategic objectives of the AMS

- Safety: maintained
- Simplification: worsens delay absorption, disruption recovery, airport capacity, network capacity and ATCO workload. Does not utilise aircraft performance capabilities
- Integration of diverse users: continues to integrate defence and security and GA
- Environmental sustainability: worsens CO₂ emissions

Qualitative Safety Assessment

A high-level safety appraisal for this proposed option indicates that if the baseline system was retained, the existing level of safety performance undertaken within the current operation would be at least maintained. However, if there was no change to the current operation the potential increase in traffic as forecast would increase controller workload and traffic complexity within the LTMA leading to potential safety issues in the future. To mitigate any reduction in safety margins it is likely that increased flow management measures would be required, resulting in additional delay.

Conclusion from IOA

This option was rejected during the DPE stage. It has been included for comparison purposes only.

Table 13 GW-DN Initial Options Appraisal

GW - IH - N (DM) Qualitative Initial Impacts Assessment

Group Impact

Communities Noise impact on health and quality of life

ANG (2017) states "at or above 7,000ft...minimising of noise is no longer a priority". CAP1616 instructs sponsors to consider noise and tranquillity impacts where the proposal has the potential to change overflight of inhabited areas, AONBs and NPs below 7,000ft. In this network-level proposal, changes would not occur below 7,000ft therefore these impacts are not considered.

Communities Air Quality

ANG (2017) states "emissions from aircraft above 1,000ft are unlikely to have a significant impact on local air quality". Changes would occur at or above 7,000ft, thus in accordance with ANG (2017) there would be no change in local air quality impacts.

Wider Society Greenhouse Gas Impacts

This design option is an optimised version of today which may improve the approach phase from the hold to 7,000ft. However, this location does not align with airport traffic flows. Overall, it could maintain GHG emissions compared with the baseline.

Wider Society Capacity / Resilience

Capacity: This option could maintain airport capacity, providing the same number of hols as the baseline. This location aligns with network traffic flows so could maintain network capacity compared with the baseline.

Resilience: Optimised holds could maintain disruption recovery resulting from unplanned runway closure. This option could maintain a similar number of holding levels, therefore it could maintain delay absorption compared with the baseline.

General Aviation (GA) Access

A holding facility to the north would likely be within current day CAS. There is already an arrival structure in this location. As a result, the access impact on GA traffic is unlikely to change compared with the baseline.

Aligns with network traffic flows, which could enable potential capacity gains across the LTMA from an improved network design. Could enable positive economic impacts through airport capacity gains; however, other non-airspace constraints may hinder overall capacity and economic gains at Luton. This could positively impact all LTMA traffic – commercial and GA.

GA/Commercial Airlines Fuel Burn

This design option is an optimised version of today which may improve the approach phase from the hold to 7,000ft. However, this location does not align with airport traffic flows. Overall, it could maintain fuel burn compared with the baseline. There are currently structures in this location so no change in impact is expected for GA traffic.

Commercial Airlines Training Costs

Flight procedures change worldwide with each AIRAC cycle and operators would update their procedures accordingly, training staff if required. This option is not anticipated to impose additional training cost impacts for operators.

Commercial Airlines Other Costs

No other operator costs are foreseen.

Airport / ANSP Infrastructure Costs

This design option is not expected to change airport or ANSP infrastructure impacts, beyond the initial deployment phase which will require some systems engineering adaptations.

Airport / ANSP Operational Costs

This design option is not expected to change airport or ANSP operational cost impacts.

Airport / ANSP Deployment Costs

At this stage it is disproportionate to attempt to quantify deployment costs per design option. However, a large LTMA system change would involve training a large number of controllers and assistants via the use of various air traffic simulators (including sim prep, management, and staffing), with additional system engineering costs.

AMS Performance against the vision and parameters/strategic objectives of the AMS

- Safety: maintained
- Simplification: could maintain delay absorption, disruption recovery, airport capacity, network capacity, and ATCO workload. Will utilise aircraft performance capabilities
- Integration of diverse users: continues to integrate defence and security and GA, subject to constraints of the design
- Environmental sustainability: could maintain CO₂ emissions

Qualitative Safety Assessment

A high-level safety appraisal for this proposed option indicates that an Inner Hold to the north would at least maintain current safety performance. There are multiple holds within current UK airspace which have a proven safety performance. An arrival structure in this location would need to deconflict with all Stansted traffic.

Conclusion from IOA

Compared to the baseline, this option would maintain safety and any current MoD access. It could maintain fuel burn, CO_2 emissions, delay absorption, disruption recovery, access to other users, airport capacity, network capacity, and ATCO workload.

Therefore, GW - IH - N (DM) is progressed to Stage 3 for further development.

Table 14 GW-IH-N (DM) Initial Options Appraisal

GW - IH - NE Qualitative Initial Impacts Assessment

Group Impact

Communities Noise impact on health and quality of life

ANG (2017) states "at or above 7,000ft...minimising of noise is no longer a priority". CAP1616 instructs sponsors to consider noise and tranquillity impacts where the proposal has the potential to change overflight of inhabited areas, AONBs and NPs below 7,000ft. In this network-level proposal, changes would not occur below 7,000ft therefore these impacts are not considered.

Communities Air Quality

ANG (2017) states "emissions from aircraft above 1,000ft are unlikely to have a significant impact on local air quality". Changes would occur at or above 7,000ft, thus in accordance with ANG (2017) there would be no change in local air quality impacts.

Wider Society Greenhouse Gas Impacts

This design option is an optimised version of today which may improve the approach phase from the hold to 7,000ft. This location also aligns with airport traffic flows. Therefore, it could reduce GHG emissions through improved aircraft trajectories compared with the baseline.

Wider Society Capacity / Resilience

Capacity: This option could maintain airport capacity, providing the same number of holds as the baseline. This location aligns with network traffic flows so could maintain network capacity compared with the baseline.

Resilience: Optimised holds could maintain disruption recovery resulting from unplanned runway closure. This option could maintain a similar number of holding levels, therefore it could maintain delay absorption compared with the baseline.

General Aviation (GA) Access

A holding facility to the northeast would likely be within current day CAS. As a result, the access impact on GA traffic is unlikely to change compared with the baseline.

GA/Commercial Airlines Economic Impact from Increased Effective Capacity

Aligns with network traffic flows, which could enable capacity gains across the LTMA from an improved network design. Could enable positive economic impacts through airport capacity gains for Luton; however, other non-airspace constraints may hinder overall capacity and economic gains at Luton. This could positively impact all LTMA traffic – commercial and GA.

GA/Commercial Airlines Fuel Burn

This design option is an optimised version of today which may improve the approach phase from the hold to 7,000ft. This location also aligns with airport traffic flows. Therefore, it could reduce fuel burn compared with the baseline for commercial operators.

There are not currently any structures in this location so it may negatively impact transiting GA traffic.

Commercial Airlines Training Costs

Flight procedures change worldwide with each AIRAC cycle and operators would update their procedures accordingly, training staff if required. This option is not anticipated to impose additional training cost impacts for operators.

Commercial Airlines Other Costs

No other operator costs are foreseen.

Airport / ANSP Infrastructure Costs

This design option is not expected to change airport or ANSP infrastructure impacts, beyond the initial deployment phase which will require some systems engineering adaptations.

Airport / ANSP Operational Costs

This design option is not expected to change airport or ANSP operational cost impacts.

Airport / ANSP Deployment Costs

At this stage it is disproportionate to attempt to quantify deployment costs per design option. However, a large LTMA system change would involve training a large number of controllers and assistants via the use of various air traffic simulators (including sim prep, management, and staffing), with additional system engineering costs.

AMS Performance against the vision and parameters/strategic objectives of the AMS

- Safety: maintained
- Simplification: could maintain delay absorption, disruption recovery, airport capacity, network capacity, and ATCO workload. Will utilise aircraft performance capabilities
- Integration of diverse users: continues to integrate defence and security and GA, subject to constraints of the design
- Environmental sustainability: could reduce CO₂ emissions

Qualitative Safety Assessment

A high-level safety appraisal for this proposed option indicates that an Inner Hold to the northeast would at least maintain current safety performance. There are multiple holds within current UK airspace which have a proven safety performance. An arrival structure in this location would need to deconflict with all Stansted traffic.

Conclusion from IOA

Compared to the baseline, this option could improve fuel burn and CO_2 emissions. It would maintain safety and any current MoD access. It could maintain delay absorption, disruption recovery, access to other users, airport capacity, network capacity, and ATCO workload.

Therefore, GW – IH – NE is progressed to Stage 3 for further development.

Table 15 GW-IH-NE Initial Options Appraisal

GW - PM - NE Qualitative Initial Impacts Assessment

Group Impact

Communities Noise impact on health and quality of life

ANG (2017) states "at or above 7,000ft...minimising of noise is no longer a priority". CAP1616 instructs sponsors to consider noise and tranquillity impacts where the proposal has the potential to change overflight of inhabited areas, AONBs and NPs below 7,000ft. In this network-level proposal, changes would not occur below 7,000ft therefore these impacts are not considered.

Communities Air Quality

ANG (2017) states "emissions from aircraft above 1,000 ft are unlikely to have a significant impact on local air quality". Changes would occur at or above 7,000ft, thus in accordance with ANG (2017) there would be no change in local air quality impacts.

Wider Society Greenhouse Gas Impacts

This design option could result in extended track miles to complete the Point Merge structure, compared with baseline. However, this location aligns with airport traffic flows. Overall, it could reduce GHG emissions compared with the baseline.

Wider Society Capacity / Resilience

Capacity: This option could maintain airport capacity, providing the same number of holds as the baseline. This location aligns with network traffic flows so could maintain network capacity compared with the baseline.

Resilience: Disruption recovery could be similar to the baseline, with a contingency hold* utilised in the event of unplanned runway closure. This option could provide additional holding capacity plus additional delay absorption by flying the Point Merge structure. Therefore, it could improve delay absorption compared with the baseline.

*The positioning and altitude of this contingency hold would be the subject of collaborative work with the airport in Stage 3.

General Aviation (GA) Access

A Point Merge facility to the northeast may require additional CAS, the extent is not yet known. As a result, the access impact on GA traffic may be worse compared with the baseline.

This option aligns with network traffic flows, which could enable capacity gains across the LTMA from an improved network design. A Point Merge could also enable positive economic impacts through airport capacity gains; however, other non-airspace constraints may hinder overall capacity and economic gains at Luton. No impact on GA is expected.

GA/Commercial Airlines Fuel Burn

This design option could result in extended track miles to complete the Point Merge structure, compared with baseline. However, this location aligns with airport traffic flows. Overall, it could maintain fuel burn compared with the baseline for commercial operators. No change in impact is expected for GA.

Commercial Airlines Training Costs

Flight procedures change worldwide with each AIRAC cycle and operators would update their procedures accordingly, training staff if required. This option is not anticipated to impose additional training cost impacts for operators.

Commercial Airlines Other Costs

No other operator costs are foreseen.

Airport / ANSP Infrastructure Costs

This design option is not expected to change airport or ANSP infrastructure impacts, beyond the initial deployment phase which will require some systems engineering adaptations.

Airport / ANSP Operational Costs

This design option is not expected to change airport or ANSP operational cost impacts.

Airport / ANSP Deployment Costs

At this stage it is disproportionate to attempt to quantify deployment costs per design option. However, a large LTMA system change would involve training a large number of controllers and assistants via the use of various air traffic simulators (including sim prep, management, and staffing), with additional system engineering costs.

AMS Performance against the vision and parameters/strategic objectives of the AMS

- Safety: could enhance
- Simplification: could improve delay absorption, maintain disruption recovery, maintain airport capacity and maintain network capacity. Could reduce ATCO workload. Will utilise aircraft performance capabilities
- Integration of diverse users: continues to integrate defence and security and GA, subject to constraints of the design
- Environmental sustainability: could maintain CO₂ emissions

Qualitative Safety Assessment

A high-level safety appraisal for this proposed option indicates that a Point Merge to the northeast could enhance current safety performance. There is already a Point Merge within current UK airspace which has a proven safety performance. A Point Merge could decrease controller workload by reducing the requirement for tactical intervention due to aircraft following a systemised structure. An arrival structure in this location would need to deconflict with all Stansted traffic and military operations out of USAFE Lakenheath & Mildenhall.

Conclusion from IOA

Compared to the baseline, this option could improve safety, delay absorption, and ATCO workload. It could maintain disruption recovery, fuel burn, CO_2 emissions, access to other users, airport capacity, and network capacity. Depending on the location, there could be negative impacts on military operations, the extent is not yet known.

Therefore, GW - PM - NE is progressed to Stage 3 for further development.

Table 16 GW-PM-NE Initial Options Appraisal

4. Step 2B Conclusion and Next Steps

- 4.1.1 There is not yet enough detailed quantified data to make a statement on preferred option(s).

 Compromises and trade-offs may be necessary between airports taking part in the FASI regional airspace change. Appropriate quantitative assessments and trade-offs will be carried out as part of Stage 3 to allow a preferred option to be selected prior to consultation.
- 4.1.2 This table provides a summary of design option concepts for Luton, showing how the number of design options has changed through the design development stages as described above.

Module	Initial Long List	Comprehensive List	Progress to IOA	Progress to Stage 3
Luton	14	6	3	3

Table 17 Count of Design Option Concepts for each module through option development stages

4.1.3 These shortlisted options have been carried forward to Stage 3:

Luton Option Concepts progressed to Stage 3		
Inner Holds - North (DM)		
Inner Holds – Northeast		
Point Merge – Northeast		

Table 18 Summary of design options progressed to Stage 3

5. APPENDIX 1: Arrival Structure Concepts

5.1.1 Arrival structure types identified as being viable options for potential airspace designs across the LTMA airports:

Structure	Diagram	Description
Optimised ⁶ Holds Illustration of network/airport boundary (indicative c.7,000ft)	7 	A holding pattern is used to delay aircraft from landing, in a vertically separated stack. ATC control entry to, and exit from, the stack; and aircraft are vectored to the runway or may use a transition. Linked with either a traditional Radar Manoeuvring Area (RMA) or Transitions. This design is for holds within c.30nm of the airport.
Holds Further Out Illustration of network/airport boundary (indicative c.7,000ft)	7 7 A	As above but would typically be higher. This design is for holds c.30nm-60nm from the airport.
Point Merge Illustration of network/airport boundary (indicative c.7,000ft)		Point Merge (PM) is a systemised method for sequencing arrival flows, allowing controllers to sequence and merge arrivals without vectoring, whilst enabling continuous descent operations and maintaining runway throughput. This design has a fixed location regarding the merge legs and merge point.
Switch Merge Illustration of network/airport boundary (indicative c.7,000ft)		SM is a concept not currently in UK operation, whereby two separate PM structures exist within a given airspace volume to serve different runway directions for the same airport. The merge legs and merge point (the tip of each triangle) is angled to favour the runway in use, but only one of the merge structures is in operation at any time; they are 'switched' when the runway direction changes. The holds do not change.
Trombone Illustration of network/airport boundary (indicative c.7,000ft)		A 'snake-like' PBN transition which can be closed (fixed) which aircraft must fly; or open, whereby tactical flexibility is retained with defined short cuts.

Figure 5 Arrival structure concepts (at and above 7,000ft)

⁶ See paragraph 2.2.10 of Master document for explanation of 'Optimised'

End of document