

AIRSPACE MODERNISATION AIRSPACE CHANGE **PROPOSAL**

STEP 2B INITIAL OPTIONS APPRAISAL

APPENDIX C

VECTORED ARRIVALS PART 5

Heathrow

Table of Contents

1.	Initial Options Appraisal - Runway 27R	3
2 .	Initial Options Appraisal - Runway 27R Option D	4
3.	Initial Options Appraisal - Runway 27R Option E	8
4.	Initial Options Appraisal - Runway 27R Option F	12
5.	Initial Options Appraisal - Runway 27R Option G	16

Initial Options Appraisal

Vectored Arrivals

Runway 27R

All airspace design options in this document are subject to change throughout the airspace change process, as options are matured in detail and refined in accordance with safety requirements, design principles, appraisals and stakeholder engagement and consultation.

Version 1.0 (July 2023)

Vectored Arrivals – RWY 27R Option D

Option Description

This option has a vectoring area with Runway 27R Final Approach joining points between 11 and 15nm.

Communities – Noise impact on health & quality of life

Metric	Option Value	Difference to Baseline
Population above Partial LOAEL (daytime, LA _{eq} , 16h)	601,400	+31,200
Population above Partial LOAEL (night-time, LA _{eq} , 8h)	820,900	+9,200
Population experiencing at least one event of N65 (daytime)	2,661,400	-530,200
Population experiencing at least one event of N60 (night-time)	3,298,600	+193,900

Communities - Air Quality

As there is no change to track distribution below 1000ft, there is no effect on Air Quality from this option.

Wider Society - Greenhouse Gas Impact			
Metric	Option Value		
Overall Track Miles of the option (nm)	Not possible to assess at this time, owing to uncertainty in new stack locations.		

Wider Society – Tranquillity & Biodiversity

	•	
Metric	Option Value	Difference to Baseline
Total Area of AONBs/National Parks (NPs) overflown between 0-7000ft once a day on average (daytime)	91km ²	+67km ²
Total Area of AONBs/NPs overflown experiencing at least one event of N65 on average (daytime)	0km²	No change
Total Area of Richmond Park overflown between 0-7000ft at least once a day on average (daytime)	0km ²	0km²
Number of sites (RAMSAR, SAC, SPA, SSSI) overflown between 0- 1640ft which observe a potential change in location overflown	0	No change
Number of sites (RAMSAR, SAC, SPA, SSSI) overflown between 0-3000ft which observe a potential change in location overflown	0	No change

Wider Society - Capacity/Resilience

The ability to constrain the vectoring area to joining final approach to within just a 4nm window is untested at Heathrow. There is a chance that the loss of flexibility could result in a degradation in landing rate, as an over delivery of arrivals will result in needing to extend arrival beyond the 4nm swathe.

Assuming that can be managed or occasional excursions from the small vectoring area is allowed, there is no other evidence to suggest an optimal landing rate cannot be achieved with this length final.

Heathrow's capacity for this ACP is limited by the existing 480,000 movement cap.

General Aviation - Access

No additional CAS envisaged.

Option would not facilitate the release of CAS.

General Aviation / Commercial Airlines – Economic impact from increased effective capacity

No economic effect expected on GA operations.

Assuming a smaller vectoring area has no negative effect on capacity, vectoring to final approach is expected to deliver the required landing rate.

Commercial Airlines - Training costs

Option does not require any re-equipage or upgrade costs for airlines. No training costs required for airlines.

Airport/ANSP – Infrastructure costs

No changes to infrastructure costs envisaged.

Airport/ANSP - Deployment costs

There will be considerable costs associated with deployment in terms of operational training and system upgrades which will be quantified in Stage 3. However, there is not expected to be any differences in these costs between the different options.

Safety

No IFP Design issues identified.

Although new or revised safety assurances may be needed, an acceptable safety argument is envisaged to be achievable.

Interdependencies, Conflicts & Trade-Offs

Option may restrict CCO/CDO to/from 7000ft for London City, Biggin Hill, Gatwick and Farnborough.

General Aviation / Commercial Airlines – Fuel Burn

Change in Fuel Burn (compared to the Baseline annual - tonnes) Not able to quantify at this time, owing to uncertainty in new stack locations.

Commercial Airlines – Other costs

None identified.

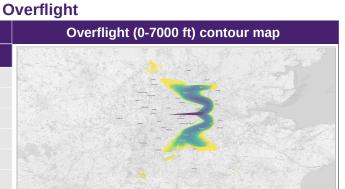
Airport/ANSP - Operational costs

This option is not anticipated to change airport or ANSP operational costs.

Option may lead to a change in the number of properties eligible for the noise insulation scheme which could lead to a change in operational costs for the airport.

Adherence to AMS

Supports the AMS by enabling an efficient flow of traffic, accommodating demand and providing system resilience to the benefit of airspace users, where a sole reliance on PBN Arrivals is not expected to achieve this.


Outcome of Vectored Arrival RWY27R Option D

All vectored arrival options have been retained into Stage 3 to allow us to determine if it would be beneficial and/or feasible to use different vectoring areas during different periods to provide respite or relief from noise. This will be informed by our Concept work during Stage 3 system assembly.

VECTOR Arrivals – RWY 27R Option D (Day)

07:00 - 23:00

Λi,	roraft	Moico	Events
AII	(Hall	140126	EVELLIS

Rate	Population experiencing noise events above N65 each day				
Raie	Baseline	Option D			
≥1	3,191,600	2,661,400			
≥ 5	1,235,700	1,432,500			
≥ 10	726,400	808,400			
≥ 20	339,500	418,000			
≥ 50	170,200	172,000			
≥ 100	83,900	83,300			
≥ 200	70,000	70,100			

Population Overflown

Option D

4,542,900

4,163,500

3,684,900

3,266,600

1,893,200

571,800

264,400

Baseline

7,318,500

5,318,700

4,371,500

3,320,800

1,498,900

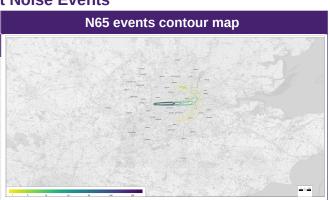
360,600

209,400

Rate

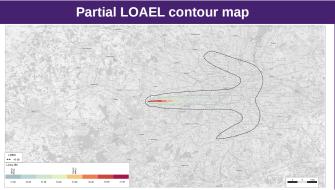
≥1

≥ 5

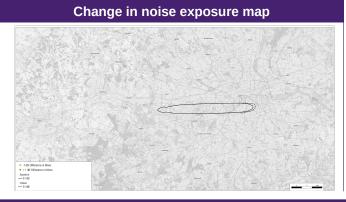

≥ 10

≥ 20

≥ 50


≥ 100

≥ 200


	N	OI	se	EX	po	su	res
--	---	----	----	----	----	----	-----

		NOISC EX
Population count	Baseline	Option D
Estimated total population above WHO Threshold (>45 dB L _{den})	3,163,500	3,119,000
Total population within Partial LOAEL (>51 dB L _{Aeq,16h})	570,200	601,400

N	Inio	22	Εv	no	CII	ro I	Ch	an	an

Change in Noise	Population experiencing at least 1 dB reduction within partial LOAEL or	Population experiencing no change in noise	Population experiencing at least 1 dB increase within partial LOAEL or
Exposure	brought out of partial LOAEL	exposure within partial LOAEL	brought into partial LOAEL
	4,300		35,600
Partial LOAEL	(of which 4,300 brought out of Partial LOAEL by Option)	565,900	(of which 35,600 brought into Partial LOAEL by Option)

VECTOR Arrivals – RWY 27R Option D (Night)

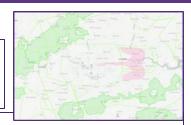
23:00 - 07:00

		(Overflight
Rate	Population	Overflown	Ov
Rate	Baseline	Option D	
≥1	4,354,100	3,560,700	
≥ 5	1,603,900	1,704,800	
≥ 10	542,400	815,900	
≥ 20	214,900	247,300	
≥ 50	0	0	
≥ 100	0	0	
≥ 200	0	0	

Overflight (0-7000 ft) contour map					
1 5 4	, , , , ,				

	Aircraft Noise Events				
Data		ng noise events above ich day	N60 events contour map		
Rate	Baseline	Option D			
≥ 1	3,104,600	3,298,600			
≥ 5	1,210,300	1,639,000			
≥ 10	889,700	927,800			
≥ 20	330,500	360,100	关系的自然是一个有效是		
≥ 50	0	0			
≥ 100	0	0			
≥ 200	0	0	1 5 8 9 8 8 8 8		

Noise Exposures							
Population count	Population count Baseline Option D Partial LOAEL contour map						
Estimated total population above WHO Threshold (>40 dB L _{night})	2,208,300	2,380,100					
Total population within Partial LOAEL (>45 dB L _{Aeq,8h})	811,700	820,900	Upt				


	Noise Exposure Change					
Change in Noise Exposure	Population experiencing at least 1 dB reduction within partial LOAEL or brought out of partial LOAEL	Population experiencing no change in noise exposure within partial LOAEL	Population experiencing at least 1 dB increase within partial LOAEL or brought into partial LOAEL	Change in noise exposure map		
Partial LOAEL	31,300 (of which 31,300 brought out of Partial LOAEL by Option)	778,500	42,300 (of which 40,400 brought into Partial LOAEL by Option)	* 1.60 Globator to Many * 1.60		

Vectored Arrivals – RWY 27R Option E

Option Description

This option has a vectoring area with Runway 27R Final Approach joining points between 12 and 16nm.

Communities – Noise impact on health & quality of life

Metric	Option Value	Difference to Baseline
Population above Partial LOAEL (daytime, LA _{eq} , 16h)	649,200	+79,000
Population above Partial LOAEL (night-time, LA _{eq} , 8h)	861,400	+49,700
Population experiencing at least one event of N65 (daytime)	2,300,500	-891,100
Population experiencing at least one event of N60 (night-time)	3,113,400	+8,700

Communities - Air Quality

As there is no change to track distribution below 1000ft, there is no effect on Air Quality from this option.

Wider Society – Greenhouse Gas Impact					
Metric Option Value					
Overall Track Miles of the option (nm)	Not possible to assess at this time, owing to uncertainty in new stack locations.				

Wider Society - Tranquillity & Biodiversity

transfer of the state of the st								
Metric	Option Value	Difference to Baseline						
Total Area of AONBs/National Parks (NPs) overflown between 0-7000ft once a day on average (daytime)	103km ²	+79km²						
Total Area of AONBs/NPs overflown experiencing at least one event of N65 on average (daytime)	0km ²	No change						
Total Area of Richmond Park overflown between 0-7000ft at least once a day on average (daytime)	0km ²	0km²						
Number of sites (RAMSAR, SAC, SPA, SSSI) overflown between 0-1640ft which observe a potential change in location overflown	0	No change						
Number of sites (RAMSAR, SAC, SPA, SSSI) overflown between 0-3000ft which observe a potential change in location overflown	0	No change						

Wider Society - Capacity/Resilience

The ability to constrain the vectoring area to joining final approach to within just a 4nm window is untested at Heathrow. There is a chance that the loss of flexibility could result in a degradation in landing rate, as an over delivery of arrivals will result in needing to extend arrival beyond the 4nm swathe.

Assuming that can be managed or occasional excursions from the small vectoring area is allowed, there is no other evidence to suggest an optimal landing rate cannot be achieved with this length final.

Heathrow's capacity for this ACP is limited by the existing 480,000 movement cap.

General Aviation - Access

No additional CAS envisaged.

Option would not facilitate the release of CAS.

General Aviation / Commercial Airlines – Economic impact from increased effective capacity

No economic effect expected on GA operations.

Assuming a smaller vectoring area has no negative effect on capacity, vectoring to final approach is expected to deliver the required landing rate.

Commercial Airlines - Training costs

Option does not require any re-equipage or upgrade costs for airlines. No training costs required for airlines.

Airport/ANSP – Infrastructure costs

No changes to infrastructure costs envisaged.

Airport/ANSP - Deployment costs

There will be considerable costs associated with deployment in terms of operational training and system upgrades which will be quantified in Stage 3. However, there is not expected to be any differences in these costs between the different options.

Safety

No IFP Design issues identified.

Although new or revised safety assurances may be needed, an acceptable safety argument is envisaged to be achievable.

Interdependencies, Conflicts & Trade-Offs

Option may restrict CCO/CDO to/from 7000ft for London City, Biggin Hill, Gatwick and Farnborough.

General Aviation / Commercial Airlines – Fuel Burn

Change in Fuel Burn (compared to the Baseline annual - tonnes) Not able to quantify at this time, owing to uncertainty in new stack locations.

Commercial Airlines – Other costs

None identified.

Airport/ANSP - Operational costs

This option is not anticipated to change airport or ANSP operational costs.

Option may lead to a change in the number of properties eligible for the noise insulation scheme which could lead to a change in operational costs for the airport.

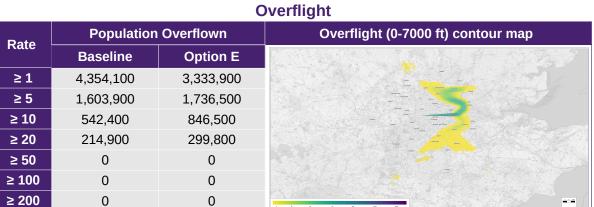
Adherence to AMS

Supports the AMS by enabling an efficient flow of traffic, accommodating demand and providing system resilience to the benefit of airspace users, where a sole reliance on PBN Arrivals is not expected to achieve this.

Outcome of Vectored Arrival RWY27R Option E


All vectored arrival options have been retained into Stage 3 to allow us to determine if it would be beneficial and/or feasible to use different vectoring areas during different periods to provide respite or relief from noise. This will be informed by our Concept work during Stage 3 system assembly.

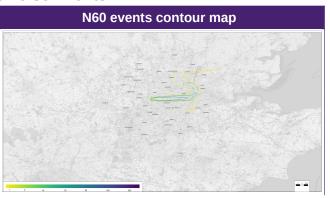
VECTOR Arrivals – RWY 27R Option E (Day)


	Aircraft Noise Events					
Rate		ng noise events above ach day	N65 events contour ma			
Raie	Baseline	Option E				
≥ 1	3,191,600	2,300,500				
≥ 5	1,235,700	1,295,300				
≥ 10	726,400	801,000				
≥ 20	339,500	463,900	天体的任务。第一年经验			
≥ 50	170,200	172,000				
≥ 100	83,900	83,300				
≥ 200	70,000	70,100	1 5 N 20 N 19 N			

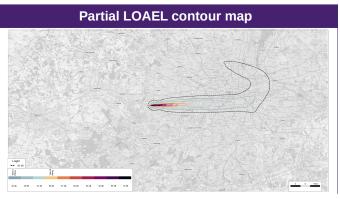
Noise Exposures					
Population count	Baseline	Option E	Partial LOAEL contour map		
Estimated total population above WHO Threshold (>45 dB L _{den})	3,163,500	2,911,900			
Total population within Partial LOAEL (>51 dB L _{Aeq,16h})	570,200	649,200			

Noise Exposure Change					
Change in Noise Exposure	Population experiencing at least 1 dB reduction experiencing no change in noise prought out of partial LOAEL or partial LOAEL or partial LOAEL		at least 1 dB increase within partial LOAEL or brought into	Change in noise exposure map	
Partial LOAEL	3,900 (of which 3,900 brought out of Partial LOAEL by Option)	532,200	117,000 (of which 82,900 brought into Partial LOAEL by Option)	* 1.60 Oversors like * 1.00 Oversors like	

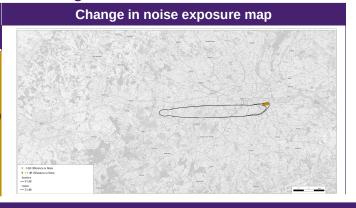
VECTOR Arrivals – RWY 27R Option E (Night)



23:00 - 07:00


	 * *** *** *** 				_	
Δ	ircra	TT P	NOI		-v	אונ
$\overline{}$	II GI G		VUI	36	-vc	, III.

Rate	Population experiencing noise events above N60 each day						
Raie	Baseline	Option E					
≥1	3,104,600	3,113,400					
≥ 5	1,210,300	1,586,400					
≥ 10	889,700	963,000					
≥ 20	330,500	386,300					
≥ 50	0	0					
≥ 100	0	0					
≥ 200	0	0					


No	ise	Exi	nos	ur	es
140				·u	-

		14013C EX
Population count	Baseline	Option E
Estimated total population above WHO Threshold (>40 dB L _{night})	2,208,300	2,248,600
Total population within Partial LOAEL (>45 dB L _{Aeq,8h})	811,700	861,400

Noise	Exposure	Change
-------	-----------------	--------

Change in Noise Exposure	Population experiencing at least 1 dB reduction within partial LOAEL or brought out of partial LOAEL	Population experiencing no change in noise exposure within partial LOAEL	Population experiencing at least 1 dB increase within partial LOAEL or brought into partial LOAEL
Partial LOAEL	4,000 (of which 4,000 brought out of Partial LOAEL by Option)	807,400	54,000 (of which 53,700 brought into Partial LOAEL by Option)

Vectored Arrivals – RWY 27R Option F

Option Description

This option has a vectoring area with Runway 27R Final Approach joining points between 13 and 17nm.

Communities – Noise impact on health & quality of life

Metric	Option Value	Difference to Baseline
Population above Partial LOAEL (daytime, LA _{eq} , 16h)	690,700	+120,500
Population above Partial LOAEL (night-time, LA _{eq} , 8h)	890,200	+78,500
Population experiencing at least one event of N65 (daytime)	2,027,800	-1,163,800
Population experiencing at least one event of N60 (night-time)	2,923,600	-181,100

Communities - Air Quality

As there is no change to track distribution below 1000ft, there is no effect on Air Quality from this option.

Wider Society - Greenhouse Gas Impact			
Metric	Option Value		
Overall Track Miles of the option (nm)	Not possible to assess at this time, owing to uncertainty in new stack locations.		

Wider Society - Tranquillity & Biodiversity

	•	
Metric	Option Value	Difference to Baseline
Total Area of AONBs/National Parks (NPs) overflown between 0-7000ft once a day on average (daytime)	106km ²	+82km ²
Total Area of AONBs/NPs overflown experiencing at least one event of N65 on average (daytime)	0km ²	No change
Total Area of Richmond Park overflown between 0-7000ft at least once a day on average (daytime)	0km ²	0km²
Number of sites (RAMSAR, SAC, SPA, SSSI) overflown between 0-1640ft which observe a potential change in location overflown	0	No change
Number of sites (RAMSAR, SAC, SPA, SSSI) overflown between 0-3000ft which observe a potential change in location overflown	0	No change

Wider Society - Capacity/Resilience

The ability to constrain the vectoring area to joining final approach to within just a 4nm window is untested at Heathrow. There is a chance that the loss of flexibility could result in a degradation in landing rate, as an over delivery of arrivals will result in needing to extend arrival beyond the 4nm swathe.

Assuming that can be managed or occasional excursions from the small vectoring area is allowed, there is no other evidence to suggest an optimal landing rate cannot be achieved with this length final.

Heathrow's capacity for this ACP is limited by the existing 480,000 movement cap.

General Aviation - Access

No additional CAS envisaged.

Option would not facilitate the release of CAS.

General Aviation / Commercial Airlines – Economic impact from increased effective capacity

No economic effect expected on GA operations.

Assuming a smaller vectoring area has no negative effect on capacity, vectoring to final approach is expected to deliver the required landing rate.

Commercial Airlines - Training costs

Option does not require any re-equipage or upgrade costs for airlines. No training costs required for airlines.

Airport/ANSP – Infrastructure costs

No changes to infrastructure costs envisaged.

Airport/ANSP - Deployment costs

There will be considerable costs associated with deployment in terms of operational training and system upgrades which will be quantified in Stage 3. However, there is not expected to be any differences in these costs between the different options.

Safety

No IFP Design issues identified.

Although new or revised safety assurances may be needed, an acceptable safety argument is envisaged to be achievable.

Interdependencies, Conflicts & Trade-Offs

Option may restrict CCO/CDO to/from 7000ft for London City, Biggin Hill, Gatwick and Farnborough.

General Aviation / Commercial Airlines – Fuel Burn

Change in Fuel Burn (compared to the Baseline annual - tonnes) Not able to quantify at this time, owing to uncertainty in new stack locations.

Commercial Airlines – Other costs

None identified.

Airport/ANSP - Operational costs

This option is not anticipated to change airport or ANSP operational costs.

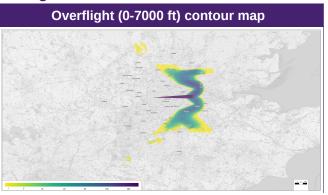
Option may lead to a change in the number of properties eligible for the noise insulation scheme which could lead to a change in operational costs for the airport.

Adherence to AMS

Supports the AMS by enabling an efficient flow of traffic, accommodating demand and providing system resilience to the benefit of airspace users, where a sole reliance on PBN Arrivals is not expected to achieve this.

Outcome of Vectored Arrival RWY27R Option F

All vectored arrival options have been retained into Stage 3 to allow us to determine if it would be beneficial and/or feasible to use different vectoring areas during different periods to provide respite or relief from noise. This will be informed by our Concept work during Stage 3 system assembly.



VECTOR Arrivals – RWY 27R Option F (Day)

07:00 - 23:00

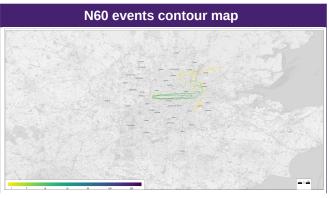
			Overflight
Rate	Population	Overflown	Ov
Raie	Baseline	Option F	
≥1	7,318,500	4,034,000	
≥ 5	5,318,700	3,746,000	
≥ 10	4,371,500	3,329,700	
≥ 20	3,320,800	2,863,600	
≥ 50	1,498,900	1,669,800	
≥ 100	360,600	602,700	
> 200	209 400	364 300	

Aircraft Noise Events				
Doto	Population experiencing noise events above N65 each day			
Rate	Baseline	Option F		
≥1	3,191,600	2,027,800		
≥ 5	1,235,700	1,086,400		
≥ 10	726,400	782,500		
≥ 20	339,500	506,900		
≥ 50	170,200	172,000		
≥ 100	83,900	83,300		
≥ 200	70,000	70,100		

Noise Exposures				
Population count	Baseline	Option F	Partial LOAEL contour map	
Estimated total population above WHO Threshold (>45 dB L _{den})	3,163,500	2,648,600		
Total population within Partial LOAEL (>51 dB L _{Aeq,16h})	570,200	690,700		

Noise Exposure Change				
Change in Noise Exposure	Population experiencing at least 1 dB reduction within partial LOAEL or brought out of partial LOAEL	Population experiencing no change in noise exposure within partial LOAEL	Population experiencing at least 1 dB increase within partial LOAEL or brought into partial LOAEL	Change in noise exposure map
Partial LOAEL	3,800 (of which 3,800 brought out of Partial LOAEL by Option)	531,500	159,200 (of which 124,300 brought into Partial LOAEL by Option)	* 1-60 Demons a like * 1-160 Demons a like * 1-160 Demons a like * 1-160 Demons a like - 1-160 Demons a like

VECTOR Arrivals – RWY 27R Option F (Night)



			Overflight
Rate	Population	Overflown	Ov
Rate	Baseline	Option F	
≥1	4,354,100	3,155,400	
≥ 5	1,603,900	1,641,000	
≥ 10	542,400	770,100	1945
≥ 20	214,900	348,600	
≥ 50	0	0	
≥ 100	0	0	
≥ 200	0	0	1 5 4 30

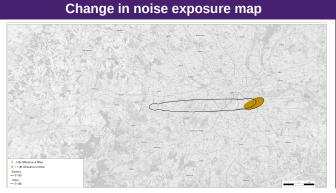
Overflight (0-7000 ft) contour map				
T-XX. \$2.67	* * * * * * * * * * * * * * * * * * *	**************************************		
	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)			
李松 红 (1)				
	Space			
N MARK TOPH Y				
1 4 9	19 19 30	\$ P		

Aircrar	t Noise Events
Population experiencing noise events above N60 each day	N60

Rate	N60 each day		
Nate	Baseline	Option F	
≥1	3,104,600	2,923,600	
≥ 5	1,210,300	1,460,100	
≥ 10	889,700	989,600	
≥ 20	330,500	423,300	
≥ 50	0	0	
≥ 100	0	0	
≥ 200	0	0	

Population count	Baseline	Option F	
Estimated total opulation above WHO Threshold (>40 dB L _{night})	2,208,300	2,078,000	

Total population within Partial LOAEL (>45 dB L_{Aeq,8h})


811,700 890,200

			11-(272)		
				THE CO	
	4.1			X	
				17-	
		集定公司一份			
3 74 6					
					- 20
			的一个个		
N N N N N N N N N N N N N N N N N N N			144/4		

Noise	Exposure	Change
Population o	vnorionoina	

Noise Exposures

Change in Noise	Population experiencing at least 1 dB reduction within partial LOAEL or	Population experiencing no change in noise	Population experiencing at least 1 dB increase within partial LOAEL or
Exposure	brought out of partial LOAEL	exposure within partial LOAEL	brought into partial LOAEL
Partial LOAEL	7,500 (of which 7,500 brought out of Partial LOAEL	734,800	155,400 (of which 86,100 brought into Partial LOAEL
	by Option)		by Option)

Vectored Arrivals – RWY 27R Option G

Option Description

This option has a vectoring area with Runway 27R Final Approach joining points between 14 and 18nm.

Communities – Noise impact on health & quality of life

Metric	Option Value	Difference to Baseline
Population above Partial LOAEL (daytime, LA _{eq} , 16h)	704,700	+134,500
Population above Partial LOAEL (night-time, LA _{eq} , 8h)	900,200	+88,500
Population experiencing at least one event of N65 (daytime)	1,749,300	-1,442,300
Population experiencing at least one event of N60 (night-time)	2,646,900	-457,800

Communities - Air Quality

As there is no change to track distribution below 1000ft, there is no effect on Air Quality from this option.

Wider Society –	Greenhouse Gas Impact
Metric	Option Value
Overall Track Miles of the option (nm)	Not possible to assess at this time, owing to uncertainty in new stack locations.

Wider Society - Tranquillity & Biodiversity

the state of the s		
Metric	Option Value	Difference to Baseline
Total Area of AONBs/National Parks (NPs) overflown between 0-7000ft once a day on average (daytime)	114km ²	+90km²
Total Area of AONBs/NPs overflown experiencing at least one event of N65 on average (daytime)	0km ²	No change
Total Area of Richmond Park overflown between 0-7000ft at least once a day on average (daytime)	0km ²	0km²
Number of sites (RAMSAR, SAC, SPA, SSSI) overflown between 0-1640ft which observe a potential change in location overflown	0	No change
Number of sites (RAMSAR, SAC, SPA, SSSI) overflown between 0-3000ft which observe a potential change in location overflown	0	No change

Wider Society - Capacity/Resilience

The ability to constrain the vectoring area to joining final approach to within just a 4nm window is untested at Heathrow. There is a chance that the loss of flexibility could result in a degradation in landing rate, as an over delivery of arrivals will result in needing to extend arrival beyond the 4nm swathe. Assuming that can be managed or occasional excursions from the small vectoring area is allowed, running a longer final approach could start to degrade the ability to consistently provide optimal spacing. This is due to the requirement to maintain more active/restrictive speed control on final approach, than on base-leg.

Heathrow's capacity for this ACP is limited by the existing 480,000 movement cap.

General Aviation - Access

No additional CAS envisaged.

Option would not facilitate the release of CAS.

General Aviation / Commercial Airlines – Economic impact from increased effective capacity

No economic effect expected on GA operations.

Running a longer final approach could start to degrade the ability to consistently provide optimal spacing. This is due to the requirement to maintain more active/restrictive speed control on final approach, than on base-leg.

This will be verified and quantified in Stage 3, should this option be favourable from an environmental and/or design perspective.

Commercial Airlines – Training costs

Option does not require any re-equipage or upgrade costs for airlines. No training costs required for airlines.

Airport/ANSP - Infrastructure costs

No changes to infrastructure costs envisaged.

Airport/ANSP - Deployment costs

There will be considerable costs associated with deployment in terms of operational training and system upgrades which will be quantified in Stage 3. However, there is not expected to be any differences in these costs between the different options.

Safety

No IFP Design issues identified.

Although new or revised safety assurances may be needed, an acceptable safety argument is envisaged to be achievable.

Interdependencies, Conflicts & Trade-Offs

Option may restrict CCO/CDO to/from 7000ft for London City, Biggin Hill, Gatwick and Farnborough. However, a consistently longer final approach could enable improved vertical profiles for London City departures to above 3000/4000ft.

General Aviation / Commercial Airlines – Fuel Burn

Change in Fuel Burn (compared to the Baseline annual - tonnes) Not able to quantify at this time, owing to uncertainty in new stack locations.

Commercial Airlines – Other costs

None identified.

Airport/ANSP – Operational costs

This option is not anticipated to change airport or ANSP operational costs.

Option may lead to a change in the number of properties eligible for the noise insulation scheme which could lead to a change in operational costs for the airport.

Adherence to AMS

Supports the AMS by enabling an efficient flow of traffic, accommodating demand & providing system resilience, where a sole reliance on PBN Arrivals is not expected to achieve this. A consistently longer final approach could impact landing rates. This will be assessed further in Stage 3 should this option be favourable from an environmental &/or design perspective.

Outcome of Vectored Arrival RWY27R Option G

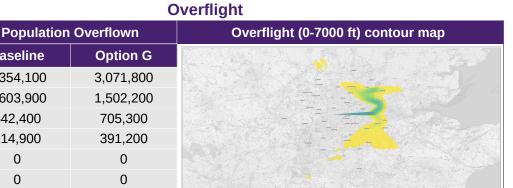
All vectored arrival options have been retained into Stage 3 to allow us to determine if it would be beneficial and/or feasible to use different vectoring areas during different periods to provide respite or relief from noise. This will be informed by our Concept work during Stage 3 system assembly.

VECTOR Arrivals – RWY 27R Option G (Day)

07:00 - 23:00

			Overflight
Rate	Population	Overflown	Ov
Rale	Baseline	Option G	
≥1	7,318,500	3,849,000	
≥ 5	5,318,700	3,555,200	
≥ 10	4,371,500	3,207,100	
≥ 20	3,320,800	2,611,900	
≥ 50	1,498,900	1,386,400	
≥ 100	360,600	552,900	
> 200	209.400	400,000	

Overflight (0-7000 ft) contour map
American Service Control of the Cont


Aircraft Noise Events			
Rate		ng noise events above ich day	N65 events contour ma
Rate	Baseline	Option G	
≥ 1	3,191,600	1,749,300	
≥ 5	1,235,700	962,700	
≥ 10	726,400	794,300	
≥ 20	339,500	530,200	天式。2015年至1915年16日本
≥ 50	170,200	172,000	
≥ 100	83,900	83,300	25 10 10
≥ 200	70,000	70,100	

		Noise Ex	cposures		
Population count	Baseline	Option G	Partial LOAEL contour map		
Estimated total population above WHO Threshold (>45 dB L _{den})	3,163,500	2,427,000			
Total population within Partial LOAEL (>51 dB L _{Aeq,16h})	570,200	704,700	TOTAL		

			Noise Exposi	ure Change
Change in Noise Exposure	Population experiencing at least 1 dB reduction within partial LOAEL or brought out of partial LOAEL	Population experiencing no change in noise exposure within partial LOAEL	Population experiencing at least 1 dB increase within partial LOAEL or brought into partial LOAEL	Change in noise exposure map
Partial LOAEL	3,700 (of which 3,700 brought out of Partial LOAEL by Option)	531,000	173,700 (of which 138,100 brought into Partial LOAEL by Option)	* 1.00 Ottomore Name * 1.00 Ottomore Name

VECTOR Arrivals – RWY 27R Option G (Night)

23:00 - 07:00

					_	
Δ	ircra	ITT I	NOI	22	⊢ \/6	אדמנ
$\overline{}$			VUI	36	-vc	, I I L O

0

Rate	Population experiencing noise events above N60 each day				
	Baseline	Option G			
≥1	3,104,600	2,646,900			
≥ 5	1,210,300	1,344,500			
≥ 10	889,700	1,014,800			
≥ 20	330,500	451,700			
≥ 50	0	0			
≥ 100	0	0			
≥ 200	0	0			

Baseline

4,354,100

1,603,900

542,400

214,900

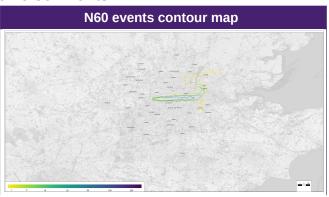
0

0

0

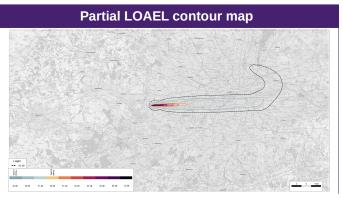
Rate

≥ 1

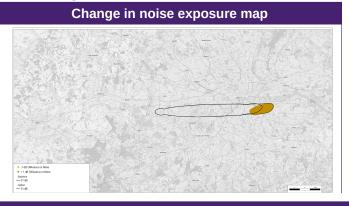

≥ 5

≥ 10

≥ 20 ≥ 50


≥ 100

≥ 200


Noise Exp	osures
-----------	--------

Population count	Baseline	Option G
Estimated total population above WHO Threshold (>40 dB L _{night})	2,208,300	1,972,300
Total population within Partial LOAEL (>45 dB L _{Aeq,8h})	811,700	900,200

Noise Exposure Change

Change in Noise Exposure	Population experiencing at least 1 dB reduction within partial LOAEL or brought out of partial LOAEL	Population experiencing no change in noise exposure within partial LOAEL	Population experiencing at least 1 dB increase within partial LOAEL or brought into partial LOAEL	
Partial LOAEL	9,600 (of which 9,600 brought out of Partial LOAEL by Option)	734,800	165,400 (of which 98,100 brought into Partial LOAEL by Option)	

